# Path Configuration from tools.preprocess import * # Processing context trait = "Mitochondrial_Disorders" cohort = "GSE22651" # Input paths in_trait_dir = "../DATA/GEO/Mitochondrial_Disorders" in_cohort_dir = "../DATA/GEO/Mitochondrial_Disorders/GSE22651" # Output paths out_data_file = "./output/preprocess/3/Mitochondrial_Disorders/GSE22651.csv" out_gene_data_file = "./output/preprocess/3/Mitochondrial_Disorders/gene_data/GSE22651.csv" out_clinical_data_file = "./output/preprocess/3/Mitochondrial_Disorders/clinical_data/GSE22651.csv" json_path = "./output/preprocess/3/Mitochondrial_Disorders/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # Check gene expression data availability is_gene_available = True # Based on background info showing Illumina HT12 v3 chips were used # Analyze trait availability # From background info, we know this is a Friedreich's ataxia study where control and disease samples are compared # Looking at the sample characteristics, we can identify disease status from cell lines # Cell lines 3816.5, 4078.1A2, 4078.1B3 are FRDA patient-derived iPSC lines trait_row = 0 # Cell line info is in row 0 def convert_trait(x): if pd.isna(x): return None x = x.split(': ')[1] if any(p in x for p in ['3816.5', '4078.1A2', '4078.1B3']): return 1 # Patient return 0 # Control # Analyze age availability age_row = 0 # Age info appears in row 0 def convert_age(x): if pd.isna(x): return None try: age = x.split(': ')[1] return float(age.split()[0]) # Extract numeric value before 'years' except: return None # Analyze gender availability gender_row = 0 # Gender info appears in multiple rows def convert_gender(x): if pd.isna(x): return None x = x.split(': ')[1].lower() if 'female' in x: return 0 elif 'male' in x: return 1 return None # Validate and save cohort info is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # Extract clinical features if trait data is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(selected_clinical_df) print("Preview of clinical features:") print(preview) # Save clinical features selected_clinical_df.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # ILMN_ prefix indicates these are Illumina probe IDs from BeadArray technology # They need to be mapped to standard gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # Map probe IDs to gene symbols # Looking at annotation data, 'ID' contains probe IDs matching ILMN_ format in gene expression data # 'Symbol' contains gene symbols mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Symbol') # Convert probe measurements to gene expression using the mapping gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview result print("Shape of gene expression data:", gene_data.shape) print("\nExample gene expression values:") print(gene_data.head()) # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)