# Path Configuration from tools.preprocess import * # Processing context trait = "Multiple_sclerosis" cohort = "GSE141804" # Input paths in_trait_dir = "../DATA/GEO/Multiple_sclerosis" in_cohort_dir = "../DATA/GEO/Multiple_sclerosis/GSE141804" # Output paths out_data_file = "./output/preprocess/3/Multiple_sclerosis/GSE141804.csv" out_gene_data_file = "./output/preprocess/3/Multiple_sclerosis/gene_data/GSE141804.csv" out_clinical_data_file = "./output/preprocess/3/Multiple_sclerosis/clinical_data/GSE141804.csv" json_path = "./output/preprocess/3/Multiple_sclerosis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # From the series summary and background, this dataset has blood mononuclear cell transcriptome data is_gene_available = True # 2.1 Data Row Identification # From the sample characteristics: gender_row = 0 # Gender data in Feature 0 age_row = 1 # Age data in Feature 1 # Trait (MS) data is not directly given in the sample characteristics trait_row = None # 2.2 Data Type Conversion Functions def convert_gender(x): if x is None: return None value = x.split(': ')[1].strip().lower() if value == 'female': return 0 elif value == 'male': return 1 return None def convert_age(x): if x is None: return None try: return float(x.split(': ')[1]) except: return None # 3. Save Initial Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Skip clinical feature extraction since trait_row is None # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # These identifiers appear to be Affymetrix probe IDs (e.g. "1007_s_at") # rather than standard human gene symbols. They will need to be mapped. requires_gene_mapping = True # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview annotation dataframe structure print("Gene Annotation Preview:") print("Column names:", gene_annotation.columns.tolist()) print("\nFirst few rows as dictionary:") print(preview_df(gene_annotation)) # 1. The 'ID' column in annotation matches the probe identifiers in expression data # The 'Gene Symbol' column contains the target gene symbols prob_id = 'ID' gene_symbol = 'Gene Symbol' # 2. Get mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_id, gene_symbol) # 3. Convert probe-level data to gene-level expression data gene_data = apply_gene_mapping(gene_data, mapping_data) # Print gene data shape and preview to verify mapping worked print("\nShape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene data:") print(gene_data.head()) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Create a minimal linked dataset since we lack trait information linked_data = gene_data.T # Just use gene expression data is_biased = True # Mark as biased since we lack the essential trait information # 3. Validate and save cohort info - mark as unusable due to missing trait information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=is_biased, df=linked_data, note="Could not identify trait information in sample characteristics." )