# Path Configuration from tools.preprocess import * # Processing context trait = "Multiple_sclerosis" cohort = "GSE189788" # Input paths in_trait_dir = "../DATA/GEO/Multiple_sclerosis" in_cohort_dir = "../DATA/GEO/Multiple_sclerosis/GSE189788" # Output paths out_data_file = "./output/preprocess/3/Multiple_sclerosis/GSE189788.csv" out_gene_data_file = "./output/preprocess/3/Multiple_sclerosis/gene_data/GSE189788.csv" out_clinical_data_file = "./output/preprocess/3/Multiple_sclerosis/clinical_data/GSE189788.csv" json_path = "./output/preprocess/3/Multiple_sclerosis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on the background info mentioning Affymetrix HU-133A-2 microarrays, this dataset contains gene expression data is_gene_available = True # 2. Variable Availability and Row Identification trait_row = 0 # "patient diagnosis: multiple sclerosis" age_row = 2 # "age(years)" data gender_row = 3 # "gender" data # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: # Binary: Convert MS patients to 1 (we know all are MS patients from background) if 'multiple sclerosis' in value.lower(): return 1 return None def convert_age(value: str) -> float: # Continuous: Extract age number after colon try: age = float(value.split(':')[1].strip()) return age except: return None def convert_gender(value: str) -> int: # Binary: female=0, male=1 value = value.split(':')[1].strip().lower() if value == 'female': return 0 elif value == 'male': return 1 return None # 3. Save Metadata - Initial Filtering validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # These identifiers appear to be Affymetrix probeset IDs rather than gene symbols # Looking at examples like "1007_s_at", "1053_at", "117_at" - these follow the # Affymetrix probe set ID format rather than HGNC gene symbols requires_gene_mapping = True # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview annotation dataframe structure print("Gene Annotation Preview:") print("Column names:", gene_annotation.columns.tolist()) print("\nFirst few rows as dictionary:") print(preview_df(gene_annotation)) # Get gene expression data again gene_data = get_genetic_data(matrix_file) # Extract mapping between probe IDs and gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Apply gene mapping to convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # Save gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Load clinical data and convert trait based on age clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) # Recalculate trait based on age (POMS: age ≤ 18 [1], AOMS: age > 18 [0]) clinical_data.loc[trait] = (clinical_data.loc['Age'] <= 18).astype(int) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Evaluate bias is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Pediatric vs Adult Onset Multiple Sclerosis comparison based on blood transcriptome data. Trait defined as POMS (1) vs AOMS (0) using age cutoff of 18 years." ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)