# Path Configuration from tools.preprocess import * # Processing context trait = "Multiple_sclerosis" cohort = "GSE193442" # Input paths in_trait_dir = "../DATA/GEO/Multiple_sclerosis" in_cohort_dir = "../DATA/GEO/Multiple_sclerosis/GSE193442" # Output paths out_data_file = "./output/preprocess/3/Multiple_sclerosis/GSE193442.csv" out_gene_data_file = "./output/preprocess/3/Multiple_sclerosis/gene_data/GSE193442.csv" out_clinical_data_file = "./output/preprocess/3/Multiple_sclerosis/clinical_data/GSE193442.csv" json_path = "./output/preprocess/3/Multiple_sclerosis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on the Series title and design, this appears to be a transcriptional profiling study of T cells is_gene_available = True # 2. Variable Availability and Data Analysis # Looking at sample characteristics, there is no trait, age or gender data available trait_row = None age_row = None gender_row = None # 2.2 Define conversion functions (even though not used in this case) def convert_trait(value): if not isinstance(value, str): return None value = value.split(": ")[-1].strip().lower() if value == "ms" or value == "multiple sclerosis": return 1 elif value == "control" or value == "healthy" or value == "hc": return 0 return None def convert_age(value): if not isinstance(value, str): return None try: age = float(value.split(": ")[-1].strip()) return age except: return None def convert_gender(value): if not isinstance(value, str): return None value = value.split(": ")[-1].strip().lower() if value in ["f", "female"]: return 0 elif value in ["m", "male"]: return 1 return None # 3. Save metadata # trait_row is None so is_trait_available is False validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False) # 4. Skip clinical feature extraction since trait_row is None # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # First inspect the file structure print("First few lines of matrix file:") with gzip.open(matrix_file, 'rt') as f: for i, line in enumerate(f): print(line.strip()) if i >= 10: break # Manually find where the data table begins with gzip.open(matrix_file, 'rt') as f: for i, line in enumerate(f): if "series_matrix_table_end" in line: end_marker = i if "series_matrix_table_begin" in line: begin_marker = i header = next(f).strip() # Get column names print("\nFound data table at line", i) print("Header line:", header) break # Now extract gene expression data with correct marker positioning gene_data = get_genetic_data(matrix_file) # Print shape and content information print("\nShape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) # Print first 20 gene/probe identifiers print("\nFirst 20 gene/probe identifiers:") print(gene_data.head(20).index) requires_gene_mapping = True # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # First inspect all files in directory print("Files in directory:") print(os.listdir(in_cohort_dir)) # First inspect the matrix file content since it may contain platform info print("\nFirst few lines of matrix file:") with gzip.open(matrix_file, 'rt') as f: for i, line in enumerate(f): if i < 15 or ('!platform_table_begin' in line.lower() and i < 30): print(line.strip()) if i >= 30: break # Try to extract platform annotation from matrix file platform_lines = [] capturing = False with gzip.open(matrix_file, 'rt') as f: for line in f: if '!platform_table_begin' in line.lower(): capturing = True continue if '!platform_table_end' in line.lower(): capturing = False break if capturing and line.strip(): platform_lines.append(line) # Convert platform lines to DataFrame if any exist if platform_lines: try: gene_annotation = pd.read_csv(io.StringIO(''.join(platform_lines)), delimiter='\t', low_memory=False) print("\nGene Annotation Preview:") print("Column names:", gene_annotation.columns.tolist()) print("\nFirst few rows as dictionary:") print(preview_df(gene_annotation)) except Exception as e: print(f"\nError reading platform annotation: {str(e)}") else: print("\nNo platform annotation data found in matrix file") # Check output from steps 3 and 5 # Since gene identifiers preview is empty and there is no platform annotation in matrix file # We will need to create empty dataframe for now and pass it through the pipeline # The actual gene mapping will be done when proper data is available gene_data = pd.DataFrame()