# Path Configuration from tools.preprocess import * # Processing context trait = "Obesity" cohort = "GSE123088" # Input paths in_trait_dir = "../DATA/GEO/Obesity" in_cohort_dir = "../DATA/GEO/Obesity/GSE123088" # Output paths out_data_file = "./output/preprocess/3/Obesity/GSE123088.csv" out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE123088.csv" out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE123088.csv" json_path = "./output/preprocess/3/Obesity/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") import pandas as pd import numpy as np # Check gene expression data availability is_gene_available = True # CD4+ T cells expression data should be present # Find trait, age and gender data rows and define conversion functions trait_row = 1 # 'primary diagnosis' contains obesity info age_row = 3 # 'age' info starts in row 3, continues in row 4 gender_row = 2 # 'Sex' information def convert_trait(x): if pd.isna(x): return None val = x.split(': ')[1] if ': ' in x else x if val.upper() in ['OBESITY']: return 1 elif 'CONTROL' in val.upper(): return 0 return None def convert_age(x): if pd.isna(x): return None try: val = x.split(': ')[1] if ': ' in x else x return float(val) except: return None def convert_gender(x): if pd.isna(x): return None val = x.split(': ')[1] if ': ' in x else x if val.upper() == 'FEMALE': return 0 elif val.upper() == 'MALE': return 1 return None # Validate and save initial cohort info _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # Extract clinical features if trait data is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the clinical features preview = preview_df(selected_clinical_df) print("Clinical features preview:") print(preview) # Save clinical features selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Based on the gene expression data shown, the identifiers appear to be numerical indices (1, 2, 3, etc.) # rather than human gene symbols. This indicates mapping to gene symbols will be required. requires_gene_mapping = True # Get file paths using library function soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # First inspect a snippet of raw SOFT file to understand its structure import gzip print("Inspecting raw SOFT file structure:") with gzip.open(soft_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if i < 20: # Look at first 20 lines lines.append(line.strip()) else: break print('\n'.join(lines)) print("\n" + "="*50 + "\n") # Extract gene annotation from SOFT file, excluding header lines gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation shape:", gene_annotation.shape) print("\nGene annotation columns:") print(gene_annotation.columns.tolist()) print("\nGene annotation preview:") print(preview_df(gene_annotation)) print("\nNumber of non-null values in each column:") print(gene_annotation.count()) # Print first few rows of annotation data to verify structure print("\nFirst 5 rows of annotation data:") print(gene_annotation.head().to_string()) # First find the SubSeries ID from the SOFT file import gzip subseries_id = None with gzip.open(soft_file, 'rt', encoding='utf-8') as f: for line in f: if line.startswith('!Series_relation'): if 'SubSeries of:' not in line: subseries_id = line.strip().split(' = ')[1].split(' ')[0] break # The correct subseries directory should be one level up platform_soft_file = os.path.join(os.path.dirname(os.path.dirname(soft_file)), subseries_id, f"{subseries_id}_family.soft.gz") # Extract platform annotation from the subseries SOFT file platform_lines = [] with gzip.open(platform_soft_file, 'rt', encoding='utf-8') as f: reading_platform = False for line in f: if line.startswith('!Platform_table_begin'): reading_platform = True # Skip the header line header = next(f).strip().split('\t') continue elif line.startswith('!Platform_table_end'): break elif reading_platform: platform_lines.append(line.strip()) # Create platform annotation dataframe platform_data = [line.split('\t') for line in platform_lines] df_platform = pd.DataFrame(platform_data, columns=header) # Get mapping using ID and gene symbol columns mapping_data = get_gene_mapping(df_platform, 'ID', 'Gene Symbol') # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_data) # Preview results print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) # Ensure index is string type for gene symbol mapping gene_data.index = gene_data.index.astype(str) # Convert Entrez IDs to gene symbols using the built-in mapping gene_data = normalize_gene_symbols_in_index(gene_data) # Print shape and preview results print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) # Save gene expression data gene_data.to_csv(out_gene_data_file) # 1. First get platform annotation with gene symbols import gzip with gzip.open(soft_file, 'rt') as f: platform_section = False platform_lines = [] for line in f: if line.startswith('^PLATFORM'): platform_section = True elif platform_section and line.startswith('!Platform_table_begin'): header = next(f).strip().split('\t') for l in f: if l.startswith('!Platform_table_end'): break platform_lines.append(l.strip()) # Create platform annotation dataframe platform_data = [line.split('\t') for line in platform_lines] platform_df = pd.DataFrame(platform_data, columns=header) mapping_df = get_gene_mapping(platform_df, 'ID', 'Gene Symbol') # Apply mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # 2. Load clinical data and normalize gene symbols selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0) gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 3. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) # 4. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 5. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Study examining gene expression in CD4+ T cells across multiple diseases including obesity" ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) # 1. Since we have Entrez IDs in the gene expression data index, # we can directly normalize them to gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Load clinical data and link with genetic data selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Study examining gene expression in CD4+ T cells across multiple diseases including obesity" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)