# Path Configuration from tools.preprocess import * # Processing context trait = "Obesity" cohort = "GSE158850" # Input paths in_trait_dir = "../DATA/GEO/Obesity" in_cohort_dir = "../DATA/GEO/Obesity/GSE158850" # Output paths out_data_file = "./output/preprocess/3/Obesity/GSE158850.csv" out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE158850.csv" out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE158850.csv" json_path = "./output/preprocess/3/Obesity/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on series title and design, this appears to be skeletal muscle transcriptome data is_gene_available = True # 2.1 Data Availability # Trait: No specific obesity measurement values are provided trait_row = None # Age: Background info indicates having young and elderly groups, but not specific ages age_row = None # Gender: Feature 1 shows mix of male/female gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): # Not used since trait data not available return None def convert_age(x): # Not used since age data not available return None def convert_gender(x): # Not used since gender data not available return None # 3. Save metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Skip clinical feature extraction since trait_row is None # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) requires_gene_mapping = True # Get file paths using library function soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file and get meaningful data gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation shape:", gene_annotation.shape) print("\nGene annotation preview:") print(preview_df(gene_annotation)) print("\nNumber of non-null values in each column:") print(gene_annotation.count()) # Print example rows showing the mapping information columns print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):") print("\nFirst 5 rows:") print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string()) print("\nNote: Gene mapping will use:") print("'ID' column: Probe identifiers") print("'GENE_SYMBOL' column: Contains gene symbol information") # Create mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL') # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_data) # Verify the result print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows after mapping:") print(gene_data.head()) print("\nFirst 20 gene symbols:") print(gene_data.index[:20]) # 1. Normalize and save gene data gene_data.index = gene_data.index.str.replace('-mRNA', '') gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # Create empty DataFrame for validation since we lack clinical data empty_df = pd.DataFrame() # Validate and save cohort info, marking as biased due to lack of trait data validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="Study has gene expression data but lacks usable clinical trait information for obesity analysis" )