# Path Configuration from tools.preprocess import * # Processing context trait = "Obesity" cohort = "GSE271700" # Input paths in_trait_dir = "../DATA/GEO/Obesity" in_cohort_dir = "../DATA/GEO/Obesity/GSE271700" # Output paths out_data_file = "./output/preprocess/3/Obesity/GSE271700.csv" out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE271700.csv" out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE271700.csv" json_path = "./output/preprocess/3/Obesity/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # This is whole-genome microarray data, so gene expression data should be available is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 3 # phenotype indicates diabetes remission response age_row = 1 # age data available gender_row = 0 # gender data available # 2.2 Data Type Conversion Functions def convert_trait(x): if not isinstance(x, str): return None value = x.split(': ')[-1].strip() if value == 'Responder': return 1 elif value == 'Non-Responder': return 0 return None def convert_age(x): if not isinstance(x, str): return None try: return float(x.split(': ')[-1].strip()) except: return None def convert_gender(x): if not isinstance(x, str): return None value = x.split(': ')[-1].strip() if value.lower() == 'female': return 0 elif value.lower() == 'male': return 1 return None # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction # Since trait_row is not None, we extract clinical features selected_clinical = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features print("Preview of selected clinical features:") print(preview_df(selected_clinical)) # Save to CSV selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Based on the observance of gene identifiers like "100009676_at", "10000_at", etc, # these are probe IDs from an Affymetrix microarray platform, not human gene symbols. # The "_at" suffix is a characteristic identifier format used by Affymetrix arrays. # These probe IDs need to be mapped to their corresponding gene symbols. requires_gene_mapping = True # Get file paths using library function soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file and get meaningful data # Read first 100 lines to inspect structure with gzip.open(soft_file, 'rt', encoding='utf-8') as f: print("First 100 lines from SOFT file to inspect structure:") for i, line in enumerate(f): if i < 100: # Preview structure print(line.strip()) else: break # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Get platform ID from SOFT file platform_id = None with gzip.open(soft_file, 'rt', encoding='utf-8') as f: for line in f: if line.startswith('!Platform_geo_accession'): platform_id = line.split('=')[1].strip() break print(f"Dataset uses platform: {platform_id}") print("Warning: Gene symbol mapping information is not available in the SOFT file or pre-compiled GPL mappings.") print("Saving probe-level expression data for future mapping when platform annotation becomes available.") # Save probe-level expression data gene_data.to_csv(out_gene_data_file) raise ValueError( f"Cannot complete preprocessing: Platform {platform_id} annotation data is required for mapping " "probe IDs to gene symbols, but the mapping information is not available. " "Please obtain the platform annotation data and rerun preprocessing." )