# Path Configuration from tools.preprocess import * # Processing context trait = "Obesity" cohort = "GSE281144" # Input paths in_trait_dir = "../DATA/GEO/Obesity" in_cohort_dir = "../DATA/GEO/Obesity/GSE281144" # Output paths out_data_file = "./output/preprocess/3/Obesity/GSE281144.csv" out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE281144.csv" out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE281144.csv" json_path = "./output/preprocess/3/Obesity/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on the series summary mentioning "gene expression (GE) determined by microarray" is_gene_available = True # 2.1 Data Row Identifiers # Trait (diabetes status) is in row 1 trait_row = 1 # No age data available age_row = None # Gender data in row 0 gender_row = 0 # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> Optional[int]: """Convert diabetes status to binary (0: Control, 1: Diabetic)""" if not isinstance(value, str): return None value = value.lower() if 'diabetic' in value: return 1 elif 'control' in value: return 0 return None def convert_gender(value: str) -> Optional[int]: """Convert gender to binary (0: Female, 1: Male)""" if not isinstance(value, str): return None value = value.lower() if ':' in value: value = value.split(':')[1].strip() if 'female' in value: return 0 elif 'male' in value: return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Extract Clinical Features if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data preview = preview_df(clinical_features) print("Preview of processed clinical data:", preview) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Looking at the identifiers ending in '_st', these are from an Affymetrix microarray platform # and need to be mapped to human gene symbols for proper analysis requires_gene_mapping = True # Get file paths using library function soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation by reading the SOFT file and skipping header lines with gzip.open(soft_file, 'rt', encoding='utf-8') as f: lines = [] for line in f: if line.startswith('!platform_table_begin'): next(f) # Skip the header line for data_line in f: if data_line.startswith('!platform_table_end'): break lines.append(data_line) break # Convert to DataFrame gene_annotation = pd.read_csv(io.StringIO(''.join(lines)), sep='\t') # Preview columns and content print("Gene annotation shape:", gene_annotation.shape) print("\nColumns in annotation data:") print(gene_annotation.columns.tolist()) # Print example rows showing probe ID and gene symbol columns print("\nFirst 5 rows of key mapping columns:") if 'ID' in gene_annotation.columns and 'Gene Symbol' in gene_annotation.columns: print(gene_annotation[['ID', 'Gene Symbol']].head().to_string()) else: # Show all columns for the first few rows to identify mapping information print(gene_annotation.head().to_string()) # Create clean probe ID column gene_annotation['ID'] = gene_annotation.iloc[:, 0].str.split('.').str[0] + '_st' # Extract gene symbols from annotation strings def extract_genes(annotation): if pd.isna(annotation): return [] parts = str(annotation).split(' // ') # Gene symbols typically appear after accession IDs symbols = [parts[i] for i in range(1, len(parts), 3) if i < len(parts)] return symbols # Create mapping dataframe with probe IDs and gene symbols mapping_data = pd.DataFrame({ 'ID': gene_annotation['ID'], 'Gene': gene_annotation.iloc[:, 7].apply(extract_genes) }) # Apply mapping using library function gene_data = apply_gene_mapping(gene_data, mapping_data) # Preview results print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene data:") print(gene_data.head()) # Create clean probe ID column gene_annotation['ID'] = gene_annotation.iloc[:, 0].str.split('.').str[0] + '_st' # Create mapping dataframe with probe IDs and gene symbols using extract_human_gene_symbols mapping_data = pd.DataFrame({ 'ID': gene_annotation['ID'], 'Gene': gene_annotation.iloc[:, 7].apply(extract_human_gene_symbols) }) # Apply mapping using library function gene_data = apply_gene_mapping(gene_data, mapping_data) # 1. Load clinical data and save normalized gene data selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0) gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)