# Path Configuration from tools.preprocess import * # Processing context trait = "Obesity" cohort = "GSE84046" # Input paths in_trait_dir = "../DATA/GEO/Obesity" in_cohort_dir = "../DATA/GEO/Obesity/GSE84046" # Output paths out_data_file = "./output/preprocess/3/Obesity/GSE84046.csv" out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE84046.csv" out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE84046.csv" json_path = "./output/preprocess/3/Obesity/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # From background info, this study analyzes "whole genome gene expression changes" is_gene_available = True # 2. Variable Availability and Data Type Conversion # Trait (BMI) is available in Feature 6 with screening BMI values trait_row = 6 # Gender data is available in Feature 4 gender_row = 4 # Birth dates are given in Feature 5, can calculate age age_row = 5 def convert_trait(val): if not val: return None try: # Extract numeric BMI value after colon bmi = float(val.split(": ")[1]) # Convert to binary obesity status (BMI >= 30 is obese) return 1 if bmi >= 30 else 0 except: return None def convert_gender(val): if not val: return None try: gender = val.split(": ")[1].lower() return 1 if gender == "male" else 0 if gender == "female" else None except: return None def convert_age(val): if not val: return None try: # Extract birth year from date string birth_year = int(val.split(": ")[1].split("-")[0]) # Study was conducted in 2012 based on accession info study_year = 2012 return study_year - birth_year except: return None # 3. Save metadata about data availability validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True ) # 4. Extract clinical features selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview_dict = preview_df(selected_clinical_df) print("Preview of extracted clinical features:", preview_dict) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Based on the output shown above, the gene expression data uses numeric probe IDs '7892501', '7892502', etc. # These are microarray probe identifiers and need to be mapped to human gene symbols. requires_gene_mapping = True # Get file paths using library function soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file and get meaningful data gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation shape:", gene_annotation.shape) print("\nGene annotation preview:") print(preview_df(gene_annotation)) print("\nNumber of non-null values in each column:") print(gene_annotation.count()) # Print example rows showing the mapping information columns print("\nSample mapping columns ('ID' and gene_assignment):") print("\nFirst 5 rows:") print(gene_annotation[['ID', 'gene_assignment']].head().to_string()) print("\nNote: Gene mapping will use:") print("'ID' column: Probe identifiers") print("'gene_assignment' column: Contains gene symbol information") # Get gene mapping from annotation data mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # Apply gene mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) # Preview mapped gene data print("Shape of mapped gene expression data:", gene_data.shape) print("\nFirst few rows of mapped data:") print(gene_data.head()) print("\nFirst 20 gene symbols:") print(gene_data.index[:20]) # Save mapped gene expression data gene_data.to_csv(out_gene_data_file) # 1. Load clinical data and save normalized gene data selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0) gene_data.index = gene_data.index.str.replace('-mRNA', '') gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)