# Path Configuration from tools.preprocess import * # Processing context trait = "Obstructive_sleep_apnea" cohort = "GSE133601" # Input paths in_trait_dir = "../DATA/GEO/Obstructive_sleep_apnea" in_cohort_dir = "../DATA/GEO/Obstructive_sleep_apnea/GSE133601" # Output paths out_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/GSE133601.csv" out_gene_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/gene_data/GSE133601.csv" out_clinical_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/clinical_data/GSE133601.csv" json_path = "./output/preprocess/3/Obstructive_sleep_apnea/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Based on background info mentioning "gene expression in peripheral blood mononuclear cells" and CD1D/RAB20 genes is_gene_available = True # 2.1 Data Availability # trait: Can be inferred from timepoint (pre vs post CPAP) trait_row = 2 # Age and gender are not available in sample characteristics age_row = None gender_row = None # 2.2 Convert Functions def convert_trait(value: str) -> int: """Convert pre/post CPAP to binary OSA status pre-CPAP: 1 (has OSA) post-CPAP: 0 (treated OSA)""" if not value or ':' not in value: return None value = value.split(':')[1].strip().lower() if 'pre-cpap' in value: return 1 elif 'post-cpap' in value: return 0 return None def convert_age(value: str) -> float: """Convert age to float""" return None # Not available def convert_gender(value: str) -> int: """Convert gender to binary""" return None # Not available # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Extract clinical features if trait_row is not None: clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data print("Preview of clinical data:") print(preview_df(clinical_df)) # Save to CSV clinical_df.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # These appear to be Affymetrix probe IDs (ending in "_at"), not gene symbols # Need to map these IDs to human gene symbols for analysis requires_gene_mapping = True # Extract gene annotation data from between Platform table markers gene_annotation = filter_content_by_prefix(soft_file_path, prefixes_a=['!Platform_table_begin'], prefixes_b=['!Platform_table_end'], unselect=True, source_type='file', return_df_a=True, return_df_b=False)[0] # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # Print first few rows to see full data structure print("\nFirst few rows of annotation data:") print(gene_annotation.head()) # Get gene annotation and create mapping gene_annotation = get_gene_annotation(soft_file_path) probe_gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Description') # Apply mapping to convert probe-level to gene-level data gene_data = apply_gene_mapping(genetic_data, probe_gene_mapping) # Preview results print("Preview of mapped gene expression data:") print(gene_data.head()) print("\nShape:", gene_data.shape) print("\nFirst 10 gene symbols:") print(list(gene_data.index)[:10]) # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)