# Path Configuration from tools.preprocess import * # Processing context trait = "Obstructive_sleep_apnea" cohort = "GSE135917" # Input paths in_trait_dir = "../DATA/GEO/Obstructive_sleep_apnea" in_cohort_dir = "../DATA/GEO/Obstructive_sleep_apnea/GSE135917" # Output paths out_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/GSE135917.csv" out_gene_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/gene_data/GSE135917.csv" out_clinical_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/clinical_data/GSE135917.csv" json_path = "./output/preprocess/3/Obstructive_sleep_apnea/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Yes - Background info mentions gene expression microarray data is_gene_available = True # 2.1 Data Row Identification # Group 2 baseline vs after design - use same data structure # Note: OSA state distinguishes cases/controls trait_row = None # No direct OSA status labeling in characteristics age_row = 0 # Age information in row 0 gender_row = 1 # Sex information in row 1 # 2.2 Data Type Conversion Functions def convert_trait(x): # Not implemented since trait_row is None return None def convert_age(x): # Extract numeric value after colon try: age = float(x.split(': ')[1]) return age except: return None def convert_gender(x): # Convert F->0, M->1 after colon try: gender = x.split(': ')[1] if gender == 'F': return 0 elif gender == 'M': return 1 return None except: return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Skip clinical feature extraction since trait_row is None # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Review gene identifiers # The row IDs appear to be numeric probe identifiers (e.g. 7892501) rather than human gene symbols # Therefore, we need to map these probe IDs to actual gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # Identify probe ID and gene symbol columns # 'ID' matches probe IDs in expression data # 'gene_assignment' contains gene symbol info mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # Apply gene mapping to convert probe data to gene data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Print first few rows of resulting gene data to verify print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) print("\nShape of gene data:", gene_data.shape) # Early validation of data availability is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False # No trait data available )