# Path Configuration from tools.preprocess import * # Processing context trait = "Obstructive_sleep_apnea" cohort = "GSE75097" # Input paths in_trait_dir = "../DATA/GEO/Obstructive_sleep_apnea" in_cohort_dir = "../DATA/GEO/Obstructive_sleep_apnea/GSE75097" # Output paths out_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/GSE75097.csv" out_gene_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/gene_data/GSE75097.csv" out_clinical_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/clinical_data/GSE75097.csv" json_path = "./output/preprocess/3/Obstructive_sleep_apnea/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # "Microarray gene expression profiles" indicates this is gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Row 1 contains AHI values which indicate OSA severity trait_row = 1 # Row 3 contains age values age_row = 3 # Row 2 contains gender values gender_row = 2 # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert AHI value to binary OSA status""" if not value or ':' not in value: return None try: ahi = float(value.split(': ')[1]) # AHI >= 15 indicates moderate to severe OSA return 1 if ahi >= 15 else 0 except: return None def convert_age(value: str) -> float: """Convert age string to float""" if not value or ':' not in value: return None try: return float(value.split(': ')[1]) except: return None def convert_gender(value: str) -> int: """Convert gender to binary (0=female, 1=male)""" if not value or ':' not in value: return None value = value.split(': ')[1].lower() if value == 'female': return 0 elif value == 'male': return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of selected clinical features:") print(preview_df(selected_clinical_df)) # Save to CSV os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) selected_clinical_df.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Review gene identifiers # Looking at the identifiers like A1BG, A1CF, A2M, etc. # These appear to be official human gene symbols (HUGO nomenclature) # No mapping needed as they are already in the correct format requires_gene_mapping = False # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 1. Normalize gene symbols normalized_genetic_data = normalize_gene_symbols_in_index(genetic_data) normalized_genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Gene expression profiles of peripheral blood mononuclear cells in OSA patients with clinical info including AHI, age and gender" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)