# Path Configuration from tools.preprocess import * # Processing context trait = "Osteoarthritis" cohort = "GSE107105" # Input paths in_trait_dir = "../DATA/GEO/Osteoarthritis" in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE107105" # Output paths out_data_file = "./output/preprocess/3/Osteoarthritis/GSE107105.csv" out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/GSE107105.csv" out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/GSE107105.csv" json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Given it's a microarray analysis of gene expression, gene data is available is_gene_available = True # 2.1 Data Availability # Trait is available in row 0 (disease) trait_row = 0 # Age is available in row 1 age_row = 1 # Gender is available in row 2 (Sex) gender_row = 2 # 2.2 Data Type Conversion def convert_trait(value): """Convert disease status to binary (1 for OA, 0 for RA)""" if not value: return None value = value.split(': ')[-1].strip() if value == 'OA': return 1 elif value == 'RA': return 0 return None def convert_age(value): """Convert age to continuous numeric value""" if not value: return None try: return float(value.split(': ')[-1].strip()) except: return None def convert_gender(value): """Convert gender to binary (0 for Female, 1 for Male)""" if not value: return None value = value.split(': ')[-1].strip() if value.lower() == 'female': return 0 elif value.lower() == 'male': return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None _ = validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed data preview = preview_df(selected_clinical) print("Preview of processed clinical data:") print(preview) # Save to CSV selected_clinical.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # The gene identifiers are numeric (16650001, etc.) which appear to be probe IDs # from a microarray platform. These need to be mapped to human gene symbols. requires_gene_mapping = True # Extract gene annotation data from platform table # First try the simple approach to see what columns we get gene_annotation = get_gene_annotation(soft_file_path) print("Shape:", gene_annotation.shape) print("\nFirst few rows:") print(gene_annotation.head()) print("\nColumn names:") print(list(gene_annotation.columns)) print("\nUnique values in selected columns:") for col in gene_annotation.columns: uniq_vals = gene_annotation[col].drop_duplicates().head() print(f"\n{col}:") print(uniq_vals.tolist()) # Get gene annotation data with both markers for table boundaries gene_annotation = get_gene_annotation(soft_file_path) print("Gene annotation columns:") print(gene_annotation.columns) print("\nFirst few rows:") print(gene_annotation.head()) # Create mapping dataframe with probe IDs and gene symbols probe_gene_map = pd.DataFrame() probe_gene_map['ID'] = gene_annotation['ID_REF'].astype(str) probe_gene_map['Gene'] = gene_annotation['GENE'].fillna('') # Apply the mapping to convert probe data to gene data gene_data = apply_gene_mapping(genetic_data, probe_gene_map) print("\nGene mapping dataframe shape:", probe_gene_map.shape) print("\nFirst few rows of gene mapping:") print(probe_gene_map.head()) print("\nGene expression dataframe shape:", gene_data.shape) print("\nFirst few rows of gene expression data:") print(gene_data.head()) # Save the gene expression data gene_data.to_csv(out_gene_data_file) # Extract gene annotation data from platform table using default prefixes gene_annotation = get_gene_annotation(soft_file_path) # Display structure and content print("Data shape:", gene_annotation.shape) print("\nPreview of first few rows:") print(gene_annotation.head(3)) # If needed, try additional filtering to ensure we get the gene mapping table gene_annotation = gene_annotation[gene_annotation['ID'].notna()].copy() # Verify we have proper ID column matching our expression data print("\nFirst few IDs:") print(gene_annotation['ID'].head()) # Check for potential gene symbol columns potential_symbol_cols = [] for col in gene_annotation.columns: sample_vals = gene_annotation[col].dropna().astype(str).head() # Check if values look like gene symbols (capital letters, numbers) if any(val.isupper() and len(val) < 10 for val in sample_vals): potential_symbol_cols.append(col) print(f"\nPotential gene symbol column '{col}' values:") print(sample_vals) # 1. Cannot proceed with gene normalization since gene mapping failed in previous steps # This dataset may not have gene symbols in its annotation print("WARNING: Gene symbols are unavailable in the annotation data. Proceeding with probe-level analysis.") # Use probe IDs as features probe_data = genetic_data # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 2. Link clinical and probe-level data linked_data = pd.concat([selected_clinical_df, probe_data], axis=0).T # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Gene expression data from synovial fibroblasts, comparing osteoarthritis (OA) vs rheumatoid arthritis (RA). Analysis uses probe IDs since gene symbol mapping was unavailable." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) # Save probe-level data linked_data.to_csv(out_data_file) # Also save probe expression data separately probe_data.to_csv(out_gene_data_file)