# Path Configuration from tools.preprocess import * # Processing context trait = "Osteoarthritis" cohort = "GSE236924" # Input paths in_trait_dir = "../DATA/GEO/Osteoarthritis" in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE236924" # Output paths out_data_file = "./output/preprocess/3/Osteoarthritis/GSE236924.csv" out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/GSE236924.csv" out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/GSE236924.csv" json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Assess gene expression data availability # Based on series title containing "array" and series design mentioning joint tissue comparison, # this likely contains gene expression data is_gene_available = True # 2.1 Identify data rows # From Sample Characteristics, disease status is in row 0 trait_row = 0 # Age and gender not available in sample characteristics age_row = None gender_row = None # 2.2 Define conversion functions def convert_trait(value: str) -> Optional[int]: """Convert OA status to binary (0: no OA, 1: has OA)""" if not value or ':' not in value: return None value = value.split(':')[1].strip().upper() if value == 'OA': return 1 elif value == 'CONTROL': return 0 return None def convert_age(value: str) -> Optional[float]: """Convert age to float""" return None # Not used since age data unavailable def convert_gender(value: str) -> Optional[int]: """Convert gender to binary (0: female, 1: male)""" return None # Not used since gender data unavailable # 3. Save metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract clinical features since trait data is available clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait) # Preview and save clinical data print(preview_df(clinical_df)) clinical_df.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Based on the gene identifier format (e.g. '1007_s_at', '1053_at'), these appear to be probe IDs # from an Affymetrix microarray platform rather than human gene symbols. # They will need to be mapped to gene symbols for analysis. requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # Extract mapping between probe IDs and gene symbols # From previewing data, the 'ID' column contains probe IDs matching genetic data index # and 'Gene Symbol' contains corresponding gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Apply the mapping to convert probe measurements to gene expression gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the result print("Mapped gene expression data:") print(gene_data.head()) print("\nShape:", gene_data.shape) # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)