# Path Configuration from tools.preprocess import * # Processing context trait = "Osteoarthritis" cohort = "GSE56409" # Input paths in_trait_dir = "../DATA/GEO/Osteoarthritis" in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE56409" # Output paths out_data_file = "./output/preprocess/3/Osteoarthritis/GSE56409.csv" out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/GSE56409.csv" out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/GSE56409.csv" json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # Gene expression data availability is_gene_available = True # Background info suggests this is gene expression microarray data # Define row indices and conversion functions for trait, age, and gender trait_row = 1 # Disease information in row 1 age_row = None # Age not available gender_row = None # Gender not available def convert_trait(value): if not isinstance(value, str): return None value = value.split(": ")[-1].strip() # Convert to binary where OA=1 (our trait of interest), RA=0 if value == "OA": return 1 elif value == "RA": return 0 return None # Since age/gender not available, don't need conversion functions convert_age = None convert_gender = None # Save initial validation results is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # Extract clinical features since trait data is available clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait) # Preview the processed clinical data print("Preview of clinical features:") print(preview_df(clinical_df)) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_df.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Looking at the row IDs, we can see they follow Affymetrix probe ID format (e.g. "1007_s_at", "1294_at") # These are probe IDs that need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # Get gene mapping dataframe from the annotation data # The 'ID' column in annotation matches probe IDs in expression data # The 'Gene Symbol' column contains the target gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Convert probe measurements to gene expression values using the mapping gene_data = apply_gene_mapping(genetic_data, mapping_df) # Normalize gene symbols for cases when same gene appears with different symbols gene_data = normalize_gene_symbols_in_index(gene_data) print("\nShape of gene expression data after mapping:", gene_data.shape) print("\nPreview of mapped gene expression data:") print(preview_df(gene_data)) # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)