# Path Configuration from tools.preprocess import * # Processing context trait = "Osteoporosis" cohort = "GSE152073" # Input paths in_trait_dir = "../DATA/GEO/Osteoporosis" in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE152073" # Output paths out_data_file = "./output/preprocess/3/Osteoporosis/GSE152073.csv" out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE152073.csv" out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE152073.csv" json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data # Yes - Based on background info mentioning Affymetrix microarrays and gene expression data is_gene_available = True # 2. Variable Availability and Conversion Functions # 2.1 Row Identifiers trait_row = 0 # Inferred from background info stating all subjects have osteoporosis age_row = 1 # Age data in row 1 gender_row = 0 # Gender data in row 0 # 2.2 Conversion Functions def convert_trait(x): # All subjects have osteoporosis based on study design return 1 def convert_age(x): try: # Extract numeric age value after colon age = int(x.split(': ')[1]) return age except: return None def convert_gender(x): try: gender = x.split(': ')[1].lower() if gender == 'female': return 0 elif gender == 'male': return 1 return None except: return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Get gene expression data from matrix file def get_genetic_data_modified(file_path: str, marker: str = "!series_matrix_table_begin") -> pd.DataFrame: with gzip.open(file_path, 'rt') as file: for i, line in enumerate(file): if marker in line: skip_rows = i + 1 break else: raise ValueError(f"Marker '{marker}' not found in the file.") genetic_data = pd.read_csv(file_path, compression='gzip', skiprows=skip_rows, comment='!', delimiter='\t', on_bad_lines='skip').T genetic_data.columns = genetic_data.iloc[0] # Set first row as column names genetic_data = genetic_data.iloc[1:] # Remove the first row return genetic_data genetic_data = get_genetic_data_modified(matrix_file_path) # Print outputs to examine structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 column names (probe identifiers):") print(list(genetic_data.columns)[:20]) print("\nFirst 5 row names (sample IDs):") print(list(genetic_data.index)[:5])