# Path Configuration from tools.preprocess import * # Processing context trait = "Osteoporosis" cohort = "GSE20881" # Input paths in_trait_dir = "../DATA/GEO/Osteoporosis" in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE20881" # Output paths out_data_file = "./output/preprocess/3/Osteoporosis/GSE20881.csv" out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE20881.csv" out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE20881.csv" json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability is_gene_available = True # Based on background info, this is a gene expression study of intestinal biopsies # 2.1 Data Availability trait_row = 58 # disease field with 'healthy' vs 'crohns disease' age_row = 2 # birth date field gender_row = None # No gender data # 2.2 Data Type Conversion Functions def convert_trait(value): """Convert trait values to binary: 0 for healthy control, 1 for disease case""" if not isinstance(value, str): return None value = value.split(': ')[-1].lower() if 'healthy' in value: return 0 elif 'crohns disease' in value: return 1 return None def convert_age(value): """Convert birth date to age using procedure date as reference""" from datetime import datetime if not isinstance(value, str) or ': ' not in value: return None try: birth_date = datetime.strptime(value.split(': ')[1], '%m/%d/%y') # Use 2005 as reference year since procedures were in 2004-2005 ref_date = datetime(2005, 1, 1) age = ref_date.year - birth_date.year # Adjust age if birthday hasn't occurred yet if ref_date.month < birth_date.month or (ref_date.month == birth_date.month and ref_date.day < birth_date.day): age -= 1 return age except: return None convert_gender = None # No gender data # 3. Save Initial Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save clinical features print(preview_df(clinical_features)) clinical_features.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # The row IDs are just numbers (1, 2, 3, etc) and not recognizable gene symbols # So they need to be mapped to proper human gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # 1. From the preview, we can see 'ID' column in gene annotation maps to row IDs in expression data, # and 'GENE_SYMBOL' column contains the gene symbols # 2. Create gene mapping dataframe mapping_data = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL') # 3. Apply mapping to convert probe data to gene expression gene_data = apply_gene_mapping(genetic_data, mapping_data) # Print info about the mapping and conversion print("\nShape after mapping to gene symbols:", gene_data.shape) print("\nFirst few gene symbols:", list(gene_data.index)[:10]) # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)