# Path Configuration from tools.preprocess import * # Processing context trait = "Osteoporosis" cohort = "GSE80614" # Input paths in_trait_dir = "../DATA/GEO/Osteoporosis" in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE80614" # Output paths out_data_file = "./output/preprocess/3/Osteoporosis/GSE80614.csv" out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE80614.csv" out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE80614.csv" json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # The background info mentions "microarray expression profiling" indicating gene expression data is_gene_available = True # 2.1 Data Availability # Trait data not directly available since this is a control/case study comparing # osteogenic vs adipogenic differentiation, not diseased vs healthy samples trait_row = None # Age data available in key 1 age_row = 1 # Gender data available in key 0 gender_row = 0 # 2.2 Data Type Conversion Functions def convert_trait(x): # Not needed since trait data not available return None def convert_age(x): # Extract number from string like "age: 19 years" or "age: 19" try: return float(x.split(': ')[1].split(' ')[0]) except: return None def convert_gender(x): # Convert gender to binary (female=0, male=1) try: gender = x.split(': ')[1].lower() if gender == 'male': return 1 elif gender == 'female': return 0 return None except: return None # 3. Save metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None)) # 4. Skip clinical feature extraction since trait_row is None # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # The gene identifiers start with "ILMN_" indicating these are Illumina probe IDs, not standard gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # 1. Identify the relevant columns for mapping # 'ID' in gene annotation matches the probe IDs (ILMN_*) from gene expression data # 'Symbol' contains the corresponding gene symbols prob_col = 'ID' gene_col = 'Symbol' # 2. Get gene mapping dataframe mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col) # 3. Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the results print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene data:") print(gene_data.head()) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) note = "Gene expression data available but no clinical variables for association studies" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Set to True since no clinical data makes it unusable df=genetic_data, # Pass the gene expression data note=note )