# Path Configuration from tools.preprocess import * # Processing context trait = "Osteoporosis" cohort = "GSE84500" # Input paths in_trait_dir = "../DATA/GEO/Osteoporosis" in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE84500" # Output paths out_data_file = "./output/preprocess/3/Osteoporosis/GSE84500.csv" out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE84500.csv" out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE84500.csv" json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Yes, this is gene expression microarray data studying differentiation and gene regulation is_gene_available = True # 2. Variable Availability and Data Type Conversion # Osteoporosis trait can be inferred from treatment condition in row 2 # BMP2+TGFB+IBMX treatment promotes osteogenic differentiation while others don't def convert_trait(value: str) -> int: if not value or ':' not in value: return None treatment = value.split(': ')[1].strip().lower() # Treatment with BMP2+TGFB+IBMX promotes osteogenic differentiation return 1 if treatment == 'bmp2+tgfb+ibmx' else 0 trait_row = 2 # Age and gender not available - these are cell line samples age_row = None gender_row = None convert_age = None convert_gender = None # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction # Since trait_row is not None, we extract clinical features clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data print(preview_df(clinical_features)) # Save clinical data clinical_features.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Based on the format of gene IDs like '1007_s_at', these appear to be Affymetrix probe IDs # rather than human gene symbols, which would look like 'BRCA1', 'TP53', etc. # Therefore, these IDs need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # 1. Identify mapping columns from gene annotation data # Gene identifiers are in 'ID' column as probe IDs (e.g., '1007_s_at') # Gene symbols are in 'Gene Symbol' column (e.g., 'DDR1') # 2. Extract mapping dataframe mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol') # 3. Convert probe data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Print dimensions to verify the mapping print("\nDimensions:") print(f"Original probe data: {genetic_data.shape}") print(f"After mapping to genes: {gene_data.shape}") # Preview first few rows print("\nFirst few rows of mapped gene data:") print(gene_data.head()) # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)