# Path Configuration from tools.preprocess import * # Processing context trait = "Ovarian_Cancer" cohort = "GSE126133" # Input paths in_trait_dir = "../DATA/GEO/Ovarian_Cancer" in_cohort_dir = "../DATA/GEO/Ovarian_Cancer/GSE126133" # Output paths out_data_file = "./output/preprocess/3/Ovarian_Cancer/GSE126133.csv" out_gene_data_file = "./output/preprocess/3/Ovarian_Cancer/gene_data/GSE126133.csv" out_clinical_data_file = "./output/preprocess/3/Ovarian_Cancer/clinical_data/GSE126133.csv" json_path = "./output/preprocess/3/Ovarian_Cancer/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Based on background info, this dataset contains cell marker data from ovarian cancer cells # and appears to be a gene expression study, not miRNA or methylation is_gene_available = True # 2.1 Data Availability # Trait (ovarian cancer) is recorded in field 1 "tissue: high-grade serous ovarian cancer (HGSOC)" trait_row = 1 # No age information available in sample characteristics age_row = None # No gender information available - patients with ovarian cancer are female gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value): if not isinstance(value, str): return None # Extract value after colon value = value.split(': ')[1].strip().lower() # Convert to binary - 1 for HGSOC if 'high-grade serous ovarian cancer' in value or 'hgsoc' in value: return 1 return 0 def convert_age(value): # Not used since age not available return None def convert_gender(value): # Not used since gender not available return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract Clinical Features if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview_df(selected_clinical) # Save to CSV selected_clinical.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) # Observe ILMN_ prefixes in gene IDs which indicate Illumina probe IDs # These need to be mapped to standard HGNC gene symbols for analysis requires_gene_mapping = True # Extract gene annotation data using the provided helper function gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata, n=10) print("\nGene annotation columns and sample values:") print(preview) # 1. The 'ID' column in gene annotation corresponds to Illumina probe IDs (ILMN_*) in gene expression data # The 'Symbol' column contains gene symbols prob_col = 'ID' gene_col = 'Symbol' # 2. Get mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col) # 3. Convert probe-level data to gene-level expression gene_data = apply_gene_mapping(genetic_data, mapping_data) # Save gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Gene expression data comparing ovarian cancer cell lines (HEY, SKOV3) with prostate cancer cell line (PC3), examining miRNA effects on MET." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)