# Path Configuration from tools.preprocess import * # Processing context trait = "Ovarian_Cancer" cohort = "GSE132342" # Input paths in_trait_dir = "../DATA/GEO/Ovarian_Cancer" in_cohort_dir = "../DATA/GEO/Ovarian_Cancer/GSE132342" # Output paths out_data_file = "./output/preprocess/3/Ovarian_Cancer/GSE132342.csv" out_gene_data_file = "./output/preprocess/3/Ovarian_Cancer/gene_data/GSE132342.csv" out_clinical_data_file = "./output/preprocess/3/Ovarian_Cancer/clinical_data/GSE132342.csv" json_path = "./output/preprocess/3/Ovarian_Cancer/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Based on series summary mentioning "Expression of 276 genes" and discussion of gene expression signature, # this dataset contains gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 0 # "diagnosis: High-grade serous ovarian cancer (HGSOC)" age_row = 8 # "age: q1", "age: q2" etc. gender_row = 1 # "Sex: Female" - but all female so not useful gender_row = None # Set to None since constant # 2.2 Data Type Conversion Functions def convert_trait(x): # Binary: 1 for HGSOC, 0 for others if not x: return None val = x.split(": ")[1].strip().lower() if "high-grade serous ovarian cancer" in val or "hgsoc" in val: return 1 return 0 def convert_age(x): # Convert quartile groups to estimated continuous values if not x: return None val = x.split(": ")[1].strip().lower() # Map quartiles to approximate ages based on typical ovarian cancer age distribution age_map = { 'q1': 45, # Representing ~40-50 years 'q2': 55, # Representing ~50-60 years 'q3': 65, # Representing ~60-70 years 'q4': 75 # Representing ~70-80 years } return age_map.get(val) def convert_gender(x): # Not needed since gender is constant (all female) pass # 3. Save Metadata # Run initial validation (trait data is available since trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True ) # 4. Clinical Feature Extraction if is_usable and 'clinical_data' in locals(): clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age ) # Preview the processed clinical data print("Preview of processed clinical data:") print(preview_df(clinical_df)) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) # The identifiers appear to be NCBI RefSeq Transcript IDs (NM_* format) and some Ensembl Transcript IDs (ENST*) # These need to be mapped to standard human gene symbols for analysis requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # 1. Identify columns: 'ID' matches gene expression indices, 'ORF' contains gene symbols prob_col = 'ID' gene_col = 'ORF' # 2. Get mapping between probe IDs and gene symbols mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col) # 3. Apply the mapping to convert probe measurements to gene expression values gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview the mapped gene expression data print("\nMapped gene expression data preview:") print("\nShape:", gene_data.shape) print("\nFirst few genes and samples:") print(gene_data.head()) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data # Use correct clinical features from Step 2 rather than reading from file clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=4, # Using status row for survival outcome convert_trait=lambda x: int(x.split(": ")[1]) if x else None, # Convert status 0/1 directly age_row=age_row, convert_age=convert_age ) linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Gene expression study of HGSOC patients using vital status (0/1) as outcome measure." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)