# Path Configuration from tools.preprocess import * # Processing context trait = "Ovarian_Cancer" cohort = "GSE135820" # Input paths in_trait_dir = "../DATA/GEO/Ovarian_Cancer" in_cohort_dir = "../DATA/GEO/Ovarian_Cancer/GSE135820" # Output paths out_data_file = "./output/preprocess/3/Ovarian_Cancer/GSE135820.csv" out_gene_data_file = "./output/preprocess/3/Ovarian_Cancer/gene_data/GSE135820.csv" out_clinical_data_file = "./output/preprocess/3/Ovarian_Cancer/clinical_data/GSE135820.csv" json_path = "./output/preprocess/3/Ovarian_Cancer/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # This dataset contains gene expression data based on NanoString panel is_gene_available = True # 2.1 Data Availability # Trait info in sample characteristics row 0 (diagnosis) trait_row = 0 # Age info in sample characteristics row 3 age_row = 3 # Gender is not available in sample characteristics gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(val): """Convert HGSOC vs non-HGSOC to binary""" if not isinstance(val, str): return None val = val.split(': ')[-1].strip().upper() if val == 'HGSOC': return 1 elif val == 'NON-HGSOC': return 0 return None def convert_age(val): """Convert age at diagnosis to continuous value""" if not isinstance(val, str): return None try: age = int(val.split(': ')[-1]) return age except: return None def convert_gender(val): """Placeholder function since gender is not available""" return None # 3. Save Initial Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None)) # 4. Extract Clinical Features clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features preview_result = preview_df(clinical_df) print("Preview of clinical features:") print(preview_result) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_df.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) # Looking at gene identifiers from the DataFrame index # We can see formats like "NM_000038.3:6850" which are RefSeq transcript IDs # These need to be mapped to HGNC gene symbols for standardization requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # 1. From the preview, we can see that 'ID' contains the same format of identifiers as gene expression data # and 'ORF' contains gene symbols # 2. Extract identifier-to-symbol mapping mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='ORF') # 3. Convert probe-level data to gene-level data using the mapping gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview gene-level expression data print("Gene-level expression data preview:") print("\nFirst 5 rows:") print(gene_data.head()) print("\nShape:", gene_data.shape) # Save converted gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0).T clinical_features.columns = [trait, 'Age'] linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="The dataset contains NanoString gene expression measurements from high-grade serous ovarian cancer patients, with binary comparison between HGSOC vs non-HGSOC." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Yes, from background info this is a gene expression study with NanoString panel is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait (HGSOC) data available in row 0 trait_row = 0 # Age data available in row 3 age_row = 3 # Gender data not available gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): # Extract value after colon and strip whitespace val = x.split(':')[1].strip() # Convert HGSOC to 1, non-HGSOC to 0 if 'HGSOC' == val: return 1 elif 'non-HGSOC' == val: return 0 return None def convert_age(x): # Extract value after colon and strip whitespace val = x.split(':')[1].strip() try: # Convert to integer return int(val) except: return None def convert_gender(x): return None # No gender data available # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None)) # 4. Clinical Feature Extraction # Extract clinical features since trait_row is not None clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview extracted data preview = preview_df(clinical_df) print("Preview of clinical data:") print(preview) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) # Examining the gene identifiers - they appear to be transcript IDs in RefSeq and Ensembl format # Need to map these to standard human gene symbols for consistency requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # 1. From the preview, we can see that 'ID' contains the same format of identifiers as gene expression data # and 'ORF' contains gene symbols # 2. Extract identifier-to-symbol mapping mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='ORF') # 3. Convert probe-level data to gene-level data using the mapping gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview gene-level expression data print("Gene-level expression data preview:") print("\nFirst 5 rows:") print(gene_data.head()) print("\nShape:", gene_data.shape) # Save converted gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) clinical_features.columns = [trait, 'Age'] linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="The dataset contains NanoString gene expression measurements from high-grade serous ovarian cancer patients, with binary comparison between HGSOC vs non-HGSOC." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) # Gene expression data availability check is_gene_available = False # Cannot determine without previous output # Variable availability - cannot determine without data trait_row = None age_row = None gender_row = None def convert_trait(x): return None def convert_age(x): return None def convert_gender(x): return None # Save initial metadata _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) )