# Path Configuration from tools.preprocess import * # Processing context trait = "Ovarian_Cancer" cohort = "GSE146553" # Input paths in_trait_dir = "../DATA/GEO/Ovarian_Cancer" in_cohort_dir = "../DATA/GEO/Ovarian_Cancer/GSE146553" # Output paths out_data_file = "./output/preprocess/3/Ovarian_Cancer/GSE146553.csv" out_gene_data_file = "./output/preprocess/3/Ovarian_Cancer/gene_data/GSE146553.csv" out_clinical_data_file = "./output/preprocess/3/Ovarian_Cancer/clinical_data/GSE146553.csv" json_path = "./output/preprocess/3/Ovarian_Cancer/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # From the background info, this dataset contains Affymetrix gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait (cancer status) can be inferred from tissue type in row 4 trait_row = 4 # Age is available in row 2 age_row = 2 # Gender is available in row 5 but shows only one value 'female' # Constant feature is not useful, so set to None gender_row = None # 2.2 Data Type Conversion def convert_trait(value): if not isinstance(value, str): return None # Extract value after colon val = value.split(': ')[-1].lower() # Normal tissue = 0, tumor tissue = 1 if 'normal' in val: return 0 elif 'cancer' in val or 'tumor' in val: return 1 else: return None def convert_age(value): if not isinstance(value, str): return None try: # Extract numeric value after colon age = float(value.split(': ')[-1]) return age except: return None def convert_gender(value): # Not used since gender is constant pass # 3. Save Metadata # Initial filtering - only checking data availability validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction # Since trait_row is not None, extract clinical features clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age ) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_df)) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) # The row IDs are numerical Illumina BeadChip identifiers (like 7896736, 7896738), not gene symbols # These need to be mapped to proper human gene symbols for analysis requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # 1. From preview, we can see 'ID' column contains probe IDs matching those in gene expression data, # and 'gene_assignment' column contains gene symbols in format "RefSeq // SYMBOL // Description" # 2. Extract probe-gene pairs from gene annotation data def extract_gene_symbol(text): if not isinstance(text, str): return None # Split by // and extract the second field which contains the gene symbol fields = text.split('//') if len(fields) >= 2: return fields[1].strip() return None # Copy gene_metadata and add parsed gene symbols column gene_metadata_with_symbols = gene_metadata.copy() gene_metadata_with_symbols['Gene'] = gene_metadata_with_symbols['gene_assignment'].apply(extract_gene_symbol) # Get mapping between probe IDs and gene symbols mapping_df = get_gene_mapping(gene_metadata_with_symbols, prob_col='ID', gene_col='Gene') # 3. Convert probe-level data to gene expression using many-to-many mapping gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview the results print("\nShape before mapping:", genetic_data.shape) print("Shape after mapping:", gene_data.shape) print("\nFirst few gene symbols:") print(list(gene_data.index)[:10]) # Save gene expression data after mapping gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Gene expression data from melanoma patients receiving PD-1 immunotherapy, with long-term benefit as outcome." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)