# Path Configuration from tools.preprocess import * # Processing context trait = "Ovarian_Cancer" cohort = "GSE201525" # Input paths in_trait_dir = "../DATA/GEO/Ovarian_Cancer" in_cohort_dir = "../DATA/GEO/Ovarian_Cancer/GSE201525" # Output paths out_data_file = "./output/preprocess/3/Ovarian_Cancer/GSE201525.csv" out_gene_data_file = "./output/preprocess/3/Ovarian_Cancer/gene_data/GSE201525.csv" out_clinical_data_file = "./output/preprocess/3/Ovarian_Cancer/clinical_data/GSE201525.csv" json_path = "./output/preprocess/3/Ovarian_Cancer/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # From the background info, this appears to be a gene expression dataset studying interferon effects is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # All samples are ovarian cancer - trait info can be inferred from study design trait_row = 0 # Treatment info row can be used to identify samples age_row = None # No age info available gender_row = None # No gender info available # 2.2 Data Type Conversion Functions def convert_trait(value): if not isinstance(value, str): return None value = value.split(": ")[-1].lower() # All samples are cancer cases return 1 def convert_age(value): # Not needed since age data unavailable return None def convert_gender(value): # Not needed since gender data unavailable return None # 3. Save Metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True # All samples are cancer cases ) # 4. Clinical Feature Extraction # Extract clinical features (trait data) since trait_row is available selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data preview_dict = preview_df(selected_clinical_df) print("\nPreview of processed clinical data:") print(preview_dict) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) # Looking at the gene identifiers in the index, they are numerical IDs (1,2,3,4,5) # These are not standard human gene symbols and will need to be mapped requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # Extract mapping between probe IDs and gene symbols from annotation data mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL') # Convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the gene data print("Gene expression data preview:") print("\nFirst 5 genes:") print(gene_data.head()) print("\nShape:", gene_data.shape) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # Debug print to check data structure print("Linked data preview:") print(linked_data.head()) print("\nColumns:", linked_data.columns) # 3. Transpose data to get samples as rows and genes/features as columns linked_data = linked_data.T # Debug print after transpose print("\nAfter transpose:") print(linked_data.head()) print("\nColumns:", linked_data.columns[:5], "...", len(linked_data.columns), "total columns") print(f"\nTrait values:\n{linked_data[trait].value_counts()}") # 4. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 5. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Gene expression data from ovarian cancer studying interferon treatment effects." ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)