# Path Configuration from tools.preprocess import * # Processing context trait = "Pancreatic_Cancer" cohort = "GSE120127" # Input paths in_trait_dir = "../DATA/GEO/Pancreatic_Cancer" in_cohort_dir = "../DATA/GEO/Pancreatic_Cancer/GSE120127" # Output paths out_data_file = "./output/preprocess/3/Pancreatic_Cancer/GSE120127.csv" out_gene_data_file = "./output/preprocess/3/Pancreatic_Cancer/gene_data/GSE120127.csv" out_clinical_data_file = "./output/preprocess/3/Pancreatic_Cancer/clinical_data/GSE120127.csv" json_path = "./output/preprocess/3/Pancreatic_Cancer/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on series title and genotype info, this appears to be gene expression data from pancreatic cancer cell lines is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait can be inferred from genotype (feature 2) - KrasG12D vs KO trait_row = 2 # Gender can be found in feature 0 gender_row = 0 # Age not available for cell lines age_row = None # 2.2 Data Type Conversion Functions def convert_trait(value): """Convert genotype to binary trait""" if not value or not isinstance(value, str): return None value = value.split(': ')[-1].strip() # Bap1 KO vs WT if 'KO' in value: return 1 elif 'WT' in value: return 0 return None def convert_gender(value): """Convert gender to binary""" if not value or not isinstance(value, str): return None value = value.split(': ')[-1].strip().upper() if value == 'F': return 0 elif value == 'M': return 1 return None convert_age = None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: # Extract features using the library function clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # From the row identifiers and examining the number format, these appear to be Agilent probe IDs # These will need to be mapped to standard human gene symbols for analysis requires_gene_mapping = True # Get file paths using library function soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation columns and example values:") print(preview_df(gene_annotation)) # Extract gene annotation data using a different prefix pattern for correct platform gene_annotation = filter_content_by_prefix(soft_file, prefixes_a=['^FEATURES'], unselect=True, source_type='file', return_df_a=True)[0] # Get mapping between probe IDs and gene symbols gene_mapping = gene_annotation.loc[:, ['ID', 'Gene Symbol']] gene_mapping = gene_mapping.rename(columns={'Gene Symbol': 'Gene'}).astype({'ID': 'str'}) # Convert probe-level measurements to gene expression values gene_data = apply_gene_mapping(gene_data, gene_mapping) # Save the gene expression data gene_data.to_csv(out_gene_data_file) # Get file paths using library function soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation columns and example values:") print(preview_df(gene_annotation)) # Get mapping between probe IDs and gene symbols using library function gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Convert probe-level measurements to gene expression values using library function gene_data = apply_gene_mapping(gene_data, gene_mapping) # Save the gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save normalized gene data # Remove "-mRNA" suffix from gene symbols before normalization gene_data.index = gene_data.index.str.replace('-mRNA', '') gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data and trait # First get selected clinical features using the extraction function from previous step selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Debug data structures before linking print("\nPre-linking data shapes:") print("Clinical data shape:", selected_clinical.shape) print("Gene data shape:", gene_data.shape) print("\nClinical data preview:") print(selected_clinical.head()) # Transpose gene data to match clinical data orientation gene_data_t = gene_data.T linked_data = pd.concat([selected_clinical.T, gene_data_t], axis=1) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate data quality and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Gene expression data from pancreatic cancer study. All samples are cancer cases (no controls)." ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)