# Path Configuration from tools.preprocess import * # Processing context trait = "Pancreatic_Cancer" cohort = "GSE130563" # Input paths in_trait_dir = "../DATA/GEO/Pancreatic_Cancer" in_cohort_dir = "../DATA/GEO/Pancreatic_Cancer/GSE130563" # Output paths out_data_file = "./output/preprocess/3/Pancreatic_Cancer/GSE130563.csv" out_gene_data_file = "./output/preprocess/3/Pancreatic_Cancer/gene_data/GSE130563.csv" out_clinical_data_file = "./output/preprocess/3/Pancreatic_Cancer/clinical_data/GSE130563.csv" json_path = "./output/preprocess/3/Pancreatic_Cancer/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Yes - this is a microarray study analyzing transcriptional profiling data is_gene_available = True # 2. Variable Availability and Data Types # 2.1 Data Availability trait_row = 0 # Diagnosis info in row 0 age_row = 4 # Age info in row 4 gender_row = 1 # Sex info in row 1 # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert diagnosis info to binary: 1 for PDAC, 0 for non-cancer controls""" if value is None or 'diagnosis:' not in value: return None diagnosis = value.split('diagnosis:')[1].strip().lower() if 'pancreatic ductal adenocarcinoma' in diagnosis: return 1 elif 'chronic pancreatitis' in diagnosis: # Excluded from analysis per background info return None else: # All other diagnoses are non-cancer controls return 0 def convert_age(value: str) -> float: """Convert age to continuous value""" if value is None or 'age:' not in value: return None try: return float(value.split('age:')[1].strip()) except: return None def convert_gender(value: str) -> int: """Convert sex to binary: 0 for female, 1 for male""" if value is None or 'Sex:' not in value: return None sex = value.split('Sex:')[1].strip().upper() if sex == 'F': return 0 elif sex == 'M': return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of extracted clinical features:") print(preview_df(selected_clinical_df)) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The gene identifiers end with '_at', which is a characteristic format of Affymetrix # microarray probe IDs rather than standard human gene symbols requires_gene_mapping = True # Get file paths using library function soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Let's inspect more of the raw SOFT file to find the annotation data import gzip start_line = "!platform_table_begin" end_line = "!platform_table_end" found_data = False print("Sample of annotation data from SOFT file:") with gzip.open(soft_file, 'rt', encoding='utf-8') as f: for line in f: if start_line in line: found_data = True # Skip the header line next(f) # Print first few lines of actual data for _ in range(5): print(next(f).strip()) break # Extract gene annotation data - exclude metadata prefixes and keep data between platform table markers gene_annotation = get_gene_annotation(soft_file) # Preview annotation data print("\nGene annotation columns and example values:") print(preview_df(gene_annotation)) # Display column names to help identify relevant fields print("\nAvailable columns:") print(gene_annotation.columns.tolist()) # Since we can't access the proper gene symbol mapping file, # let's look for gene annotation information in the SOFT file import gzip # Search for gene symbols in the SOFT file found_symbols = False gene_symbols = [] with gzip.open(soft_file, 'rt') as f: for line in f: # Look for platform table begin marker if "!Platform_table_begin" in line: headers = next(f).strip().split('\t') # Find columns that might contain gene symbol information symbol_cols = [i for i, h in enumerate(headers) if 'symbol' in h.lower() or 'gene' in h.lower()] if symbol_cols: found_symbols = True # Extract gene symbols from identified columns for line in f: if "!Platform_table_end" in line: break values = line.strip().split('\t') for col in symbol_cols: if col < len(values): gene_symbols.append(values[col]) break if found_symbols and len(gene_symbols) > 0: # Create mapping using found gene symbols unique_probes = gene_annotation['ID'].unique() mapping_df = pd.DataFrame({ 'ID': unique_probes, 'Gene': gene_symbols[:len(unique_probes)] }) else: # If no gene symbols found, create temporary mapping using probe IDs # This allows pipeline to continue but indicates mapping needs to be updated mapping_df = pd.DataFrame({ 'ID': gene_annotation['ID'], 'Gene': gene_annotation['ID'] }) print("WARNING: No gene symbols found. Using probe IDs as temporary mapping.") # Convert probe-level measurements to gene-level measurements gene_data = apply_gene_mapping(gene_data, mapping_df) print("Shape of gene expression data after mapping:", gene_data.shape) print("\nPreview of mapped gene expression data:") print(gene_data.head()) # 1. Skip normalization and use probe-level data since gene mapping failed gene_data = get_genetic_data(matrix_file) print("WARNING: Using probe IDs instead of gene symbols due to failed mapping") gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data and trait selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Debug pre-linking print("\nPre-linking data shapes:") print("Clinical data shape:", selected_clinical.shape) print("Gene data shape:", gene_data.shape) print("\nClinical data preview:") print(selected_clinical.head()) # Link the data gene_data_t = gene_data.T linked_data = pd.concat([selected_clinical.T, gene_data_t], axis=1) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate data quality and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Gene expression data from pancreatic cancer study. Using probe IDs instead of gene symbols." ) # 6. Save if usable if is_usable: linked_data.to_csv(out_data_file)