# Path Configuration from tools.preprocess import * # Processing context trait = "Pancreatic_Cancer" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Pancreatic_Cancer/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Pancreatic_Cancer/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Pancreatic_Cancer/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Pancreatic_Cancer/cohort_info.json" # 1. Select the relevant subdirectory for pancreatic cancer subdirectory = 'TCGA_Pancreatic_Cancer_(PAAD)' cohort_dir = os.path.join(tcga_root_dir, subdirectory) # 2. Get the file paths clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load the data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Identify candidate columns candidate_age_cols = ["age_at_initial_pathologic_diagnosis", "days_to_birth"] candidate_gender_cols = ["gender"] # Create preview dictionary directly from the columns list # Since we cannot access the data files currently, we output the candidate column names age_preview = {"Selected age columns": candidate_age_cols} gender_preview = {"Selected gender columns": candidate_gender_cols} print("Age columns:") print(age_preview) print("\nGender columns:") print(gender_preview) # Choose appropriate columns for age and gender age_cols = {'age_at_initial_pathologic_diagnosis', 'days_to_birth'} gender_cols = {'gender'} # Set age column - prefer direct age over days_to_birth if available if 'age_at_initial_pathologic_diagnosis' in age_cols: age_col = 'age_at_initial_pathologic_diagnosis' elif 'days_to_birth' in age_cols: age_col = 'days_to_birth' else: age_col = None # Set gender column gender_col = 'gender' if 'gender' in gender_cols else None # Print selected columns print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}") # 1. Extract and standardize clinical features # First create trait labels using sample IDs, then add demographics if available clinical_features = tcga_select_clinical_features( clinical_df, trait=trait, age_col='age_at_initial_pathologic_diagnosis', gender_col='gender' ) # 2. Normalize gene symbols and save normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_df.to_csv(out_gene_data_file) # 3. Link clinical and genetic data linked_data = pd.concat([clinical_features, normalized_gene_df.T], axis=1) # 4. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 5. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Validate data quality and save cohort info note = "Contains molecular data from tumor and normal samples with patient demographics." is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)