# Path Configuration from tools.preprocess import * # Processing context trait = "Parkinsons_Disease" cohort = "GSE71220" # Input paths in_trait_dir = "../DATA/GEO/Parkinsons_Disease" in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE71220" # Output paths out_data_file = "./output/preprocess/3/Parkinsons_Disease/GSE71220.csv" out_gene_data_file = "./output/preprocess/3/Parkinsons_Disease/gene_data/GSE71220.csv" out_clinical_data_file = "./output/preprocess/3/Parkinsons_Disease/clinical_data/GSE71220.csv" json_path = "./output/preprocess/3/Parkinsons_Disease/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Affymetrix Human Gene 1.1 ST array mentioned in background, indicating gene expression data is_gene_available = True # 2.1 Data Availability trait_row = 1 # Disease status in row 1 age_row = 2 # Age data in row 2 gender_row = 3 # Gender data in row 3 # 2.2 Data Type Conversion Functions def convert_trait(x): if not isinstance(x, str): return None value = x.split(': ')[-1].strip() if value == 'COPD': return 1 elif value == 'Control': return 0 return None def convert_age(x): if not isinstance(x, str): return None try: return float(x.split(': ')[-1]) except: return None def convert_gender(x): if not isinstance(x, str): return None value = x.split(': ')[-1].strip() if value == 'F': return 0 elif value == 'M': return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of extracted clinical features:") print(preview_df(clinical_features)) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Based on the row IDs being numeric identifiers (e.g. '7892501') rather than standard gene symbols, # this appears to be probe IDs that need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # 1. Get mapping from probe IDs to gene symbols # 'ID' in annotation matches probe IDs in expression data # 'gene_assignment' contains gene symbols in format "NM_### // SYMBOL // description" mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # 2. Apply gene mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # 3. Save gene data gene_data.to_csv(out_gene_data_file) print("\nPreview of gene expression data:") print(preview_df(gene_data)) # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Contains gene expression data with clinical measurements including disease status (COPD vs Control)" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)