# Path Configuration from tools.preprocess import * # Processing context trait = "Pheochromocytoma_and_Paraganglioma" cohort = "GSE33371" # Input paths in_trait_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma" in_cohort_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma/GSE33371" # Output paths out_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/GSE33371.csv" out_gene_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/gene_data/GSE33371.csv" out_clinical_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE33371.csv" json_path = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene expression data availability # From title and overall design, this dataset contains Affymetrix HG_U133_plus_2 arrays data is_gene_available = True # 2.1 Data availability # trait_row: 3 - Clinical characteristics shows pheochromocytoma cases trait_row = 3 # age_row: 0 - Age data is available age_row = 0 # gender_row: 1 - Sex data is available gender_row = 1 # 2.2 Data conversion functions def convert_trait(x: str) -> Union[int, None]: """Convert clinical characteristics to binary labels""" if not isinstance(x, str): return None value = x.split(': ')[-1].lower() # Convert to binary: 1 for pheochromocytoma cases, 0 for others if 'pheochromocytoma' in value: return 1 return 0 def convert_age(x: str) -> Union[float, None]: """Convert age to float""" if not isinstance(x, str): return None value = x.split(': ')[-1] try: if value == '<10': return 5.0 # Approximate middle value return float(value) except: return None def convert_gender(x: str) -> Union[int, None]: """Convert gender to binary (0:Female, 1:Male)""" if not isinstance(x, str): return None value = x.split(': ')[-1].upper() if value == 'F': return 0 elif value == 'M': return 1 return None # 3. Save metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical feature extraction # Extract clinical features using the library function clinical_df = geo_select_clinical_features(clinical_data, trait='Pheochromocytoma', trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features preview_result = preview_df(clinical_df) print("Preview of clinical features:") print(preview_result) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Observe the IDs from the gene expression data # The identifiers follow the pattern like '1007_s_at', '1053_at' which are # Affymetrix probe IDs from microarray platforms # These need to be mapped to human gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # Get gene mapping from annotation data mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Apply mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Print first few rows and shape of the mapped gene data print("Gene expression data after mapping:") print(gene_data.head()) print("\nShape:", gene_data.shape) # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, "Pheochromocytoma") # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, "Pheochromocytoma") # 5. Final validation and information saving note = "Dataset contains gene expression data from adrenal tissue samples, with cases identified by presence of pheochromocytoma" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)