# Path Configuration from tools.preprocess import * # Processing context trait = "Pheochromocytoma_and_Paraganglioma" cohort = "GSE64957" # Input paths in_trait_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma" in_cohort_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma/GSE64957" # Output paths out_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/GSE64957.csv" out_gene_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/gene_data/GSE64957.csv" out_clinical_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE64957.csv" json_path = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Yes, this dataset contains gene expression data from Affymetrix Human Genome U133 Plus 2.0 Array is_gene_available = True # 2.1 Variable Availability # Trait (pheo vs non-pheo) can be inferred from row 0 (disease field) trait_row = 0 # Age not available age_row = None # Gender not available gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value): """Convert disease value to binary: Pheochromocytoma (1) vs non-Pheochromocytoma (0)""" if not isinstance(value, str): return None value = value.lower().split(': ')[-1] if 'pheochromocytoma' in value: return 1 elif "conn's syndrome" in value: return 0 return None def convert_age(value): return None def convert_gender(value): return None # 3. Save initial metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract clinical features if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # The IDs appear to be numerical probe identifiers (e.g. 7892501, 7892502) # rather than human gene symbols (e.g. TP53, BRCA1) # These are likely probe IDs from a microarray platform that need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # In gene_annotation, 'ID' column stores probe identifiers matching genetic_data indices # 'gene_assignment' column stores gene symbol information in format "gene symbol // gene title // ..." # Create mapping dataframe from probe ID to gene symbol mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment') # Extract gene symbols from gene assignment string mapping_data['Gene'] = mapping_data['Gene'].str.split(' // ').str[0] # Apply gene mapping to convert probe measurements to gene expression gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview results print("Gene expression data shape:", gene_data.shape) print("\nFirst few gene symbols:") print(list(gene_data.index)[:10]) print("\nFirst few values:") print(gene_data.head()) # First check the clinical data processing print("Clinical Data Preview:") selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) print(selected_clinical_df.head()) print("\nClinical Data Shape:", selected_clinical_df.shape) print("\nClinical Data Column Names:", selected_clinical_df.columns) print("\nClinical Data Info:") print(selected_clinical_df.info()) # If clinical data is valid, proceed with processing if not selected_clinical_df.empty and not selected_clinical_df.isna().all().all(): # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) print("\nGenetic Data Shape after normalization:", genetic_data.shape) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) print("\nLinked Data Shape:", linked_data.shape) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and saving metadata note = "Gene expression data from Affymetrix array with disease status (pheochromocytoma vs Conn's syndrome)" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) else: print("Error: Clinical data processing failed - empty or invalid data") validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=True, df=pd.DataFrame(), note="Clinical data processing failed - empty or invalid data" )