# Path Configuration from tools.preprocess import * # Processing context trait = "Pheochromocytoma_and_Paraganglioma" cohort = "GSE67066" # Input paths in_trait_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma" in_cohort_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma/GSE67066" # Output paths out_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/GSE67066.csv" out_gene_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/gene_data/GSE67066.csv" out_clinical_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE67066.csv" json_path = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # The background indicates this is mRNA expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # Trait data (benign vs malignant) is available in row 1 trait_row = 1 def convert_trait(value: str) -> int: if not isinstance(value, str): return None value = value.split(': ')[-1].lower() if 'benign' in value: return 0 elif 'malignant' in value: return 1 return None # Age and gender data not found in sample characteristics age_row = None gender_row = None convert_age = None convert_gender = None # 3. Save metadata about data availability validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Extract clinical features clinical_df = geo_select_clinical_features(clinical_data, trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview extracted features print("Preview of clinical data:") print(preview_df(clinical_df)) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_df.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Based on the format of the gene identifiers (e.g. "1007_s_at"), which appear to be Affymetrix probe IDs, # we need to map these to human gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # Get mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol') # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview resulting gene expression data print("Preview of mapped gene expression data:") print(gene_data.head()) print("\nShape:", gene_data.shape) # Print some gene symbols to verify mapping print("\nFirst 20 gene symbols:") print(list(gene_data.index)[:20]) # Get a few column names to verify sample IDs are preserved print("\nFirst 5 column names:") print(list(gene_data.columns)[:5]) # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)