# Path Configuration from tools.preprocess import * # Processing context trait = "Prostate_Cancer" cohort = "GSE206793" # Input paths in_trait_dir = "../DATA/GEO/Prostate_Cancer" in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE206793" # Output paths out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE206793.csv" out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE206793.csv" out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE206793.csv" json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # This dataset contains miRNA data, not gene expression data is_gene_available = False # 2.1 Data Availability & 2.2 Data Type Conversion # Trait data is available in Feature 0, convert disease state to binary trait_row = 0 def convert_trait(value): if not value or ":" not in value: return None value = value.split(":")[1].strip().lower() if "healthy" in value: return 0 elif "prostate cancer" in value: return 1 return None # Age data is available in Feature 1 age_row = 1 def convert_age(value): if not value or ":" not in value: return None try: age = float(value.split(":")[1].strip()) return age except: return None # Gender data is not available in sample characteristics gender_row = None def convert_gender(value): return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_df = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait, age_row, convert_age, gender_row, convert_gender) print("Clinical data preview:") print(preview_df(clinical_df)) clinical_df.to_csv(out_clinical_data_file)