# Path Configuration from tools.preprocess import * # Processing context trait = "Prostate_Cancer" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Prostate_Cancer/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json" # Select the Prostate Cancer cohort as it directly matches our target trait cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Prostate_Cancer_(PRAD)') # Get clinical and genetic data file paths clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # Load the data clinical_data = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_data = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # Print clinical data columns print("Clinical data columns:") print(clinical_data.columns.tolist()) # Identify candidate demographic columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Load clinical data paths trait_map = {"Prostate_Cancer": "PRAD"} tcga_trait = trait_map[trait] # Print and verify paths cohort_dir = os.path.join(tcga_root_dir, tcga_trait) print(f"Checking directory: {cohort_dir}") if not os.path.exists(cohort_dir): raise FileNotFoundError(f"Directory not found: {cohort_dir}. Please verify the TCGA data is downloaded and placed in: {tcga_root_dir}") clinical_path, _ = tcga_get_relevant_filepaths(cohort_dir) clinical_df = pd.read_csv(clinical_path, index_col=0) # Preview age columns age_preview = preview_df(clinical_df[candidate_age_cols]) print("\nAge columns preview:") print(age_preview) # Preview gender columns gender_preview = preview_df(clinical_df[candidate_gender_cols]) print("\nGender columns preview:") print(gender_preview) # Select the Prostate Cancer cohort cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Prostate_Cancer_(PRAD)') # Get clinical and genetic data file paths clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # Load the data clinical_data = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_data = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 1. Extract and standardize clinical features clinical_features = tcga_select_clinical_features( clinical_data, trait=trait, age_col='age_at_initial_pathologic_diagnosis', gender_col='gender' ) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_features.to_csv(out_clinical_data_file) # 2. Normalize gene symbols and save normalized_gene_df = normalize_gene_symbols_in_index(genetic_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_df.to_csv(out_gene_data_file) # 3. Link clinical and genetic data on sample IDs linked_data = pd.merge( clinical_features, normalized_gene_df.T, left_index=True, right_index=True, how='inner' ) # 4. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 5. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Validate data quality and save cohort info note = "Contains molecular data from tumor and normal samples with patient demographics." is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) # With no provided dictionaries of candidate columns in the current context, # and the previous output showing failed preprocessing with abnormal data, # we cannot make an informed selection of demographic columns age_col = None gender_col = None print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}")