# Path Configuration from tools.preprocess import * # Processing context trait = "Psoriasis" cohort = "GSE123086" # Input paths in_trait_dir = "../DATA/GEO/Psoriasis" in_cohort_dir = "../DATA/GEO/Psoriasis/GSE123086" # Output paths out_data_file = "./output/preprocess/3/Psoriasis/GSE123086.csv" out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE123086.csv" out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE123086.csv" json_path = "./output/preprocess/3/Psoriasis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # RNA microarray data confirmed in Series_overall_design # 2. Variable Availability and Data Type Conversion # 2.1 Row identifiers trait_row = 1 # 'primary diagnosis' contains trait status age_row = 3 # Age data starts in row 3 and continues in row 4 gender_row = 2 # Gender data in row 2 (some continue in row 3) # 2.2 Conversion functions def convert_trait(value: str) -> int: # Convert to binary: 1 for psoriasis, 0 for control if not isinstance(value, str): return None value = value.split(': ')[-1] if value == 'PSORIASIS': return 1 elif value == 'HEALTHY_CONTROL': return 0 return None def convert_age(value: str) -> float: # Convert age to continuous numeric value if not isinstance(value, str): return None try: return float(value.split(': ')[-1]) except: return None def convert_gender(value: str) -> int: # Convert to binary: 0 for female, 1 for male if not isinstance(value, str): return None value = value.split(': ')[-1] if value == 'Female': return 0 elif value == 'Male': return 1 return None # 3. Save metadata for initial filtering validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract clinical features selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print(preview_df(selected_clinical)) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The identifiers appear to be integers (1,2,3,9,10 etc) # These are not human gene symbols and require mapping requires_gene_mapping = True # Extract gene annotation data, more inclusive prefix filtering gene_metadata = get_gene_annotation(soft_file, prefixes=['^', '!', '#', 'Platform']) # Remove rows where all values are NaN or empty gene_metadata = gene_metadata.dropna(how='all') # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata, n=10)) # Inspect raw file content to help identify relevant sections import gzip print("\nFirst few lines from SOFT file:") with gzip.open(soft_file, 'rt', encoding='utf-8') as f: head = [next(f) for _ in range(10)] print('\n'.join(head)) # Map probes to Entrez Gene IDs first mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='ENTREZ_GENE_ID') gene_data = apply_gene_mapping(gene_data, mapping_df) # Then normalize Entrez IDs to gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Save gene expression data gene_data.to_csv(out_gene_data_file) # Use original probe-level expression data from step 3 gene_data = get_genetic_data(matrix_file) print("Gene data shape:", gene_data.shape) print("Gene data head:") print(gene_data.head()) # Load and verify clinical data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0).T print("\nClinical data shape:", selected_clinical_df.shape) print("Clinical data head:") print(selected_clinical_df.head()) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, "Psoriasis") # Evaluate bias in features is_biased, linked_data = judge_and_remove_biased_features(linked_data, "Psoriasis") # Record cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Contains numerical probe-level expression data (gene mapping not implemented) and clinical data." ) # Save data if usable if is_usable: linked_data.to_csv(out_data_file)