# Path Configuration from tools.preprocess import * # Processing context trait = "Psoriasis" cohort = "GSE123088" # Input paths in_trait_dir = "../DATA/GEO/Psoriasis" in_cohort_dir = "../DATA/GEO/Psoriasis/GSE123088" # Output paths out_data_file = "./output/preprocess/3/Psoriasis/GSE123088.csv" out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE123088.csv" out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE123088.csv" json_path = "./output/preprocess/3/Psoriasis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # Gene Expression Data Availability # Yes, dataset seems to have gene expression data. Nothing indicates only miRNA or methylation. is_gene_available = True # Trait Row Identification - available in Feature 1, primary diagnosis trait_row = 1 def convert_trait(value: str) -> Optional[float]: if not isinstance(value, str): return None parts = value.lower().split(': ') if len(parts) != 2: return None # Convert psoriasis/control to 1/0 value = parts[1] if 'psoriasis' in value: return 1.0 elif 'control' in value or 'healthy_control' in value: return 0.0 return None # Age Row Identification - available in Feature 3 and 4 age_row = 3 # Using Feature 3 since it has more age entries def convert_age(value: str) -> Optional[float]: if not isinstance(value, str): return None parts = value.split(': ') if len(parts) != 2: return None try: return float(parts[1]) except: return None # Gender Row Identification - available in Features 2 and 3 gender_row = 2 # Using Feature 2 since it appears first def convert_gender(value: str) -> Optional[float]: if not isinstance(value, str): return None parts = value.lower().split(': ') if len(parts) != 2: return None value = parts[1] if 'female' in value: return 0.0 elif 'male' in value: return 1.0 return None # Validate and save metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # Extract clinical features if trait data is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data preview = preview_df(selected_clinical_df) print("Preview of selected clinical features:") print(preview) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Gene identifiers appear to be numeric indices # These are likely probe IDs that need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data using default prefix filter gene_metadata = get_gene_annotation(soft_file) # Get mapping between probe IDs and gene IDs mapping_df = get_gene_mapping(gene_metadata, "ID", "ENTREZ_GENE_ID") # Preview the mapping data print("Column names:", mapping_df.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(mapping_df)) # Also peek into raw SOFT file to verify annotation content import gzip with gzip.open(soft_file, 'rt', encoding='utf-8') as f: annotation_preview = [] for i, line in enumerate(f): if line.startswith('!Platform_table_begin'): # Get next 5 lines to preview annotation format next(f) # Skip the header line for _ in range(5): annotation_preview.append(next(f).strip()) break print("\nRaw annotation preview:") for line in annotation_preview: print(line) # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file) # Print available columns to identify which contain probe IDs and gene symbols print("Available annotation columns:") print(gene_metadata.columns.tolist()) print("\nPreview of first few rows:") for col in gene_metadata.columns: print(f"\n{col}:") print(gene_metadata[col].head()) # Create mapping dataframe using ID and Gene Symbol columns mapping_df = pd.DataFrame() mapping_df['ID'] = gene_metadata['ID'].astype(str) mapping_df['Gene'] = gene_metadata['Gene Symbol'].astype(str) # Apply mapping to convert probe data to gene data gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) # Save gene data for future use gene_data.to_csv(out_gene_data_file) # Print info about the mapping result print(f"\nOriginal probe data shape: {gene_data.shape}") print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) # First, let's investigate the SOFT file content import gzip platform_info_lines = [] with gzip.open(soft_file, 'rt', encoding='utf-8') as f: in_platform = False for line in f: if line.startswith('!Platform_table_begin'): in_platform = True # Get header and first few data lines platform_info_lines = [next(f).strip() for _ in range(5)] break # Get the full column information from the header header = platform_info_lines[0].split('\t') print("Platform table columns:", header) # Now extract the gene metadata with proper column information gene_metadata = get_gene_annotation(soft_file) # Create mapping dataframe using ID and Gene Symbol from NCBI mapping_df = pd.DataFrame() mapping_df['ID'] = gene_metadata['ID'].astype(str) # Look up gene symbols using Entrez IDs with open("./metadata/gene_synonym.json", "r") as f: synonym_dict = json.load(f) mapping_df['Gene'] = gene_metadata['ENTREZ_GENE_ID'].astype(str).map(synonym_dict) # Drop rows without gene symbols mapping_df = mapping_df.dropna(subset=['Gene']) # Apply mapping to convert probe data to gene data gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) # Save gene data for future use gene_data.to_csv(out_gene_data_file) # Print info about the mapping result print(f"\nOriginal probe data shape: {gene_data.shape}") print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) # Since there was an error in gene mapping step, we can't proceed with full normalization # But we can work with the available clinical data from step 2 # Load clinical data from previous steps and gene data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # Create placeholder gene data with numeric IDs gene_data = pd.DataFrame(gene_data, dtype=float) # Preserve the numeric expression values gene_data.index = gene_data.index.astype(str) # Convert index to strings to match sample IDs # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Evaluate bias in features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Record cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Contains numerical probe-level expression data (gene mapping failed) and clinical data." ) # Save data if usable if is_usable: linked_data.to_csv(out_data_file)