# Path Configuration from tools.preprocess import * # Processing context trait = "Psoriasis" cohort = "GSE158448" # Input paths in_trait_dir = "../DATA/GEO/Psoriasis" in_cohort_dir = "../DATA/GEO/Psoriasis/GSE158448" # Output paths out_data_file = "./output/preprocess/3/Psoriasis/GSE158448.csv" out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE158448.csv" out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE158448.csv" json_path = "./output/preprocess/3/Psoriasis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on the series title and design description, this is a gene expression study # examining IL-17 family cytokines signaling in psoriasis is_gene_available = True # 2. Feature Analysis # From sample characteristics, we can see treatment groups compared at the molecular level # The untreated samples can serve as controls while treated samples represent cases trait_row = 4 # treatment feature age_row = None # age not available gender_row = None # gender not available def convert_trait(value: str) -> int: """Convert treatment status to binary trait""" if not value or not isinstance(value, str): return None value = value.split(': ')[-1].lower() # untreated samples are controls (0), treated samples are cases (1) return 0 if 'untreated' in value else 1 def convert_age(value: str) -> float: """Placeholder function since age is not available""" return None def convert_gender(value: str) -> int: """Placeholder function since gender is not available""" return None # 3. Save initial metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Extract clinical features if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data preview = preview_df(selected_clinical_df) print("Preview of processed clinical data:") print(preview) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Looking at the identifiers, they seem to be Illumina probe IDs starting with "16650" # These need to be mapped to standard human gene symbols requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # 1. ID column in annotation data matches probe IDs in expression data # gene_assignment column contains gene symbol info in format "SYMBOL // DESCRIPTION" prob_col = 'ID' gene_col = 'gene_assignment' # 2. Extract mapping data from annotation mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col) # 3. Apply mapping to convert probe level data to gene level gene_data = apply_gene_mapping(gene_data, mapping_data) # Preview output print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped data:") print(gene_data.head()) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Clinical data is not available (trait_row was None), so skip remaining steps and mark dataset as not usable validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=None, df=gene_data, note="Contains gene expression data but lacks clinical information needed for trait association studies." )