# Path Configuration from tools.preprocess import * # Processing context trait = "Psoriasis" cohort = "GSE162998" # Input paths in_trait_dir = "../DATA/GEO/Psoriasis" in_cohort_dir = "../DATA/GEO/Psoriasis/GSE162998" # Output paths out_data_file = "./output/preprocess/3/Psoriasis/GSE162998.csv" out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE162998.csv" out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE162998.csv" json_path = "./output/preprocess/3/Psoriasis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Yes - this is a gene expression profiling study using Illumina DASL BeadArray is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait - Available in Feature 3, lesional vs non-lesional skin indicates psoriasis status trait_row = 3 # Age - Not available age_row = None # Gender - Not available gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert lesional/non-lesional status to binary psoriasis indicator""" if pd.isna(value): return None # Extract value after colon and strip whitespace value = value.split(':')[1].strip().lower() if 'lesional' in value: return 1 if value == 'lesional' else 0 return None # Age conversion not needed since age data not available convert_age = None # Gender conversion not needed since gender data not available convert_gender = None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: # Extract clinical features clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Based on the identifiers (e.g. ILMN_1343291), these are Illumina probe IDs # which need to be mapped to human gene symbols for proper analysis requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # Extract probe ID and gene symbol columns for mapping mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol') # Convert probe level data to gene expression data gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data) # Preview the gene expression data print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of gene-level data:") print(gene_data.head()) print("\nFirst 20 gene symbols:") print(gene_data.index[:20]) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Load clinical features and link with genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for feature bias trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata recording is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Gene expression data with lesional/non-lesional tissue trait information." ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)