# Path Configuration from tools.preprocess import * # Processing context trait = "Psoriasis" cohort = "GSE182740" # Input paths in_trait_dir = "../DATA/GEO/Psoriasis" in_cohort_dir = "../DATA/GEO/Psoriasis/GSE182740" # Output paths out_data_file = "./output/preprocess/3/Psoriasis/GSE182740.csv" out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE182740.csv" out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE182740.csv" json_path = "./output/preprocess/3/Psoriasis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on the background info, this is a microarray study analyzing gene expression profiles is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 1 # Found in Feature 1: 'disease: ...' age_row = None # Age not available in sample characteristics gender_row = None # Gender not available in sample characteristics # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> Optional[int]: """Convert disease status to binary (0: control, 1: Psoriasis/Mixed)""" if not isinstance(value, str): return None if ':' in value: value = value.split(':')[1].strip() # Based on summary, Mixed refers to overlap phenotype with psoriasis features if value in ['Psoriasis', 'Mixed']: return 1 elif value in ['Normal_skin']: return 0 elif value == 'Atopic_dermatitis': return 0 # AD patients are controls for psoriasis study return None def convert_age(value: str) -> Optional[float]: return None # Not used since age data unavailable def convert_gender(value: str) -> Optional[int]: return None # Not used since gender data unavailable # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait ) # Preview the processed data print("Preview of processed clinical data:") print(preview_df(selected_clinical_df)) # Save to file os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) selected_clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Looking at the identifiers like '1007_s_at', '1053_at', these are Affymetrix probe IDs, not gene symbols # They need to be mapped to human gene symbols for proper analysis requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # Get gene mapping using ID and Gene Symbol columns mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol') # Apply gene mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_data) # Preview the result print("Shape of processed gene expression data:", gene_data.shape) print("\nFirst few rows of processed gene expression data:") print(gene_data.head()) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Read and validate clinical data clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) if clinical_data.empty or clinical_data.isna().all().all(): validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=False, df=gene_data, note="Clinical data processing failed, resulting in empty or invalid data." ) else: # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data ) # 6. Save if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)