# Path Configuration from tools.preprocess import * # Processing context trait = "Psoriasis" cohort = "GSE183134" # Input paths in_trait_dir = "../DATA/GEO/Psoriasis" in_cohort_dir = "../DATA/GEO/Psoriasis/GSE183134" # Output paths out_data_file = "./output/preprocess/3/Psoriasis/GSE183134.csv" out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE183134.csv" out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE183134.csv" json_path = "./output/preprocess/3/Psoriasis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Yes, based on background info mentioning "gene expressions" and "microarray profiling" is_gene_available = True # 2. Data Availability and Type Conversion # 2.1 Row identifiers: trait_row = 1 # Disease state is in row 1 age_row = None # Age not available gender_row = None # Gender not available # 2.2 Conversion functions def convert_trait(value: str) -> int: """Convert trait value to binary (0: not trait, 1: has trait)""" if not isinstance(value, str): return None value = value.split(': ')[-1].strip() if value == 'Psoriasis': return 1 elif value == 'Pityriasis_Rubra_Pilaris': return 0 return None def convert_age(value: str) -> float: """Convert age value to float (Not used since age not available)""" return None def convert_gender(value: str) -> int: """Convert gender value to binary (Not used since gender not available)""" return None # 3. Save metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction # Since trait_row is not None, we extract clinical features selected_clinical = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait) # Preview extracted features print("Preview of extracted clinical features:") print(preview_df(selected_clinical)) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) selected_clinical.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The gene identifiers appear to be in a format like "1-Dec", "1-Sep", "10-Mar" # These are not standard human gene symbols and will need to be mapped # This format suggests they are likely probe IDs from a microarray platform requires_gene_mapping = True # First inspect the SOFT file content to identify platform data section import gzip print("Preview of platform data section:") with gzip.open(soft_file, 'rt', encoding='utf-8') as f: in_platform_section = False for line in f: if '!platform_table_begin' in line: in_platform_section = True # Skip the header line next(f) # Print next 10 lines for _ in range(10): print(next(f).strip()) break # Extract gene annotation data def extract_platform_data(file_path): data_lines = [] with gzip.open(file_path, 'rt') as f: in_platform_section = False for line in f: if '!platform_table_begin' in line: in_platform_section = True # Skip header next(f) continue if '!platform_table_end' in line: break if in_platform_section: data_lines.append(line.strip()) # Convert to DataFrame import io df = pd.read_csv(io.StringIO('\n'.join(data_lines)), delimiter='\t') return df gene_metadata = extract_platform_data(soft_file) # Preview the annotation data print("\nColumn names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # Let's properly examine the SOFT file to find the probe ID to gene symbol mapping print("Examining SOFT file content for probe mapping:") with gzip.open(soft_file, 'rt', encoding='utf-8') as f: in_platform_section = False header_found = False platform_data = [] for line in f: if line.startswith('^PLATFORM'): in_platform_section = True continue if in_platform_section and not header_found: if line.startswith('#') and 'ID' in line: # Look for the data column descriptions print(line.strip()) header_found = True if in_platform_section and line.startswith('!platform_table_begin'): header = next(f).strip().split('\t') # Read data lines until table end for data_line in f: if data_line.startswith('!platform_table_end'): break platform_data.append(data_line.strip().split('\t')) break # Convert platform data to DataFrame gene_metadata = pd.DataFrame(platform_data, columns=header) print("\nColumn names of platform annotation:", gene_metadata.columns.tolist()) print("\nFirst few rows of platform annotation:") print(preview_df(gene_metadata)) # Look at the first few rows of actual expression data IDs to match format print("\nExpression data IDs (first 5):", gene_data.index[:5].tolist()) # If we still can't find appropriate mapping columns, we'll need to use the expression # data IDs directly as gene symbols (not ideal but prevents failure) if 'Gene Symbol' in gene_metadata.columns: mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol') else: print("\nWARNING: Could not find gene symbol mapping in platform annotation.") print("Using expression data IDs directly as gene symbols.") # Create mapping dataframe using expression data IDs mapping_df = pd.DataFrame({ 'ID': gene_data.index, 'Gene': gene_data.index }) # Apply mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_df) # Preview the mapped gene expression data print("\nShape of gene expression data after mapping:", gene_data.shape) print("\nFirst few genes and their expression values:") print(gene_data.head()) # Normalize gene symbols using the library function gene_data = normalize_gene_symbols_in_index(gene_data) print("\nShape of gene expression data after normalization:", gene_data.shape) print("\nFirst few normalized genes and their expression values:") print(gene_data.head()) # Save the gene expression data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 1. Load clinical data clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) # 2. Load original gene data directly from matrix file before normalization attempt failed _, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) gene_data = get_genetic_data(matrix_file) # Create simple mapping since platform annotation was incomplete mapping_df = pd.DataFrame({ 'ID': gene_data.index, 'Gene': gene_data.index # Use probe IDs as temporary gene names }) # Convert to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_df) # 3. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # 4. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 5. Check for biases in features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Contains both gene expression data and clinical information. Gene symbols could not be normalized due to incomplete platform annotation - probe IDs are used as gene identifiers." ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)