# Path Configuration from tools.preprocess import * # Processing context trait = "Psoriasis" cohort = "GSE226244" # Input paths in_trait_dir = "../DATA/GEO/Psoriasis" in_cohort_dir = "../DATA/GEO/Psoriasis/GSE226244" # Output paths out_data_file = "./output/preprocess/3/Psoriasis/GSE226244.csv" out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE226244.csv" out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE226244.csv" json_path = "./output/preprocess/3/Psoriasis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on the background info mentioning "microarray analysis", this dataset contains gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # For trait (psoriasis status): # Feature 0 contains disease state info trait_row = 0 def convert_trait(x): if not isinstance(x, str): return None val = x.split(': ')[-1].strip() if val == 'Psoriasis': return 1 elif val == 'Control': return 0 return None # Age and gender not available in sample characteristics age_row = None gender_row = None def convert_age(x): return None def convert_gender(x): return None # 3. Save metadata # Initial filtering based on gene and trait availability validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction # Since trait_row is not None, extract clinical features clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_df)) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Based on the format of gene IDs (e.g., '1007_s_at', '1053_at', '117_at'), these appear to be # Affymetrix probe IDs rather than standard human gene symbols. # They will need to be mapped to gene symbols for downstream analysis. requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # Extract gene mapping data # 'ID' column in the gene annotation contains probe IDs matching gene expression data # 'Gene Symbol' column contains gene symbols mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol') # Map probe-level data to gene expressions gene_data = apply_gene_mapping(gene_data, mapping_df) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2-6. Handle clinical data, linking and saving if clinical_df is not None and not clinical_df.empty: # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Check for bias is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate and save info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data ) # Save if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) else: # Record that clinical data is not available validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=None, df=gene_data, note="Contains gene expression data but lacks valid clinical information needed for trait association studies." )