# Path Configuration from tools.preprocess import * # Processing context trait = "Psoriasis" cohort = "GSE252029" # Input paths in_trait_dir = "../DATA/GEO/Psoriasis" in_cohort_dir = "../DATA/GEO/Psoriasis/GSE252029" # Output paths out_data_file = "./output/preprocess/3/Psoriasis/GSE252029.csv" out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE252029.csv" out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE252029.csv" json_path = "./output/preprocess/3/Psoriasis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # First create clinical_data DataFrame from the sample characteristics sample_chars = { 0: ['study id: CNTO1959PSO3001'], 1: ['subject id: 10521', 'subject id: 10563', 'subject id: 10294', 'subject id: 10461', 'subject id: 10079', 'subject id: 10062', 'subject id: 10115', 'subject id: 10205', 'subject id: 10193', 'subject id: 10252', 'subject id: 10798', 'subject id: 10332', 'subject id: 10063', 'subject id: 10118', 'subject id: 10500', 'subject id: 10263', 'subject id: 10265', 'subject id: 10334', 'subject id: 10932', 'subject id: 10933', 'subject id: 10982', 'subject id: 10401', 'subject id: 10512', 'subject id: 10110', 'subject id: 10027', 'subject id: 10566', 'subject id: 10989', 'subject id: 10227', 'subject id: 10380', 'subject id: 10286'], 2: ['treatment: Placebo to Guselkumab', 'treatment: Guselkumab', 'treatment: Adalimumab'], 3: ['time point: WK_0', 'time point: WK_4', 'time point: WK_24', 'time point: WK_48'], 4: ['skin: LS', 'skin: NL'] } clinical_data = pd.DataFrame(sample_chars).transpose() # 1. Gene Expression Data Availability # Yes - Dataset uses GeneChip HT HG-U133+ PM Array for transcriptomics is_gene_available = True # 2.1 Data Row Indices # Trait can be inferred from skin type (LS=lesional skin, NL=nonlesional skin) trait_row = 4 # Age and gender not available age_row = None gender_row = None # 2.2 Conversion Functions def convert_trait(value: str) -> float: """Convert skin type to binary trait value LS (lesional) = 1, NL (nonlesional) = 0""" if pd.isna(value) or not isinstance(value, str): return None value = value.split(": ")[-1].strip().upper() if value == "LS": return 1.0 elif value == "NL": return 0.0 return None def convert_age(value: str) -> float: return None def convert_gender(value: str) -> float: return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction selected_clinical = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the clinical data preview_df(selected_clinical) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Cannot proceed with analysis as the output from previous step (sample characteristics and background info) is not provided print("Error: Missing prerequisite data - sample characteristics and background information needed for analysis.") raise ValueError("Output from previous step containing sample characteristics and dataset background information is required to analyze variables and extract clinical features.") # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # Extract ID and Gene Symbol columns for mapping mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol') # Apply gene mapping to get gene expression gene_data = apply_gene_mapping(gene_data, mapping_data) # Save gene data to file gene_data.to_csv(out_gene_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get gene expression data gene_data = get_genetic_data(matrix_file) # Get gene mapping gene_metadata = get_gene_annotation(soft_file) mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol') gene_data = apply_gene_mapping(gene_data, mapping_data) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Get clinical data background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Extract trait row from skin type trait_row = 4 age_row = None gender_row = None def convert_trait(value: str) -> float: """Convert skin type to binary trait value LS (lesional) = 1, NL (nonlesional) = 0""" if pd.isna(value) or not isinstance(value, str): return None value = value.split(": ")[-1].strip().upper() if value == "LS": return 1.0 elif value == "NL": return 0.0 return None def convert_age(value: str) -> float: return None def convert_gender(value: str) -> float: return None # Extract clinical features selected_clinical = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, trait_col=trait) # Check for trait bias and remove biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Save validation info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Contains gene expression and trait data (skin type: lesional vs nonlesional)." ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)