# Path Configuration from tools.preprocess import * # Processing context trait = "Psoriasis" cohort = "GSE254707" # Input paths in_trait_dir = "../DATA/GEO/Psoriasis" in_cohort_dir = "../DATA/GEO/Psoriasis/GSE254707" # Output paths out_data_file = "./output/preprocess/3/Psoriasis/GSE254707.csv" out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE254707.csv" out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE254707.csv" json_path = "./output/preprocess/3/Psoriasis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # The title and background summary indicate this is transcriptomic data (RNA-seq) # 2. Variable Availability and Data Type Conversion # Trait - from Feature 5 (diagnosis) trait_row = 5 def convert_trait(value): if not value or ":" not in value: return None diagnosis = value.split(":")[1].strip() if diagnosis == "Psoriasis": return 1 elif diagnosis == "Healthy": return 0 return None # Age - not available age_row = None convert_age = None # Gender - not available gender_row = None convert_gender = None # 3. Save initial metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Extract clinical features if available if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data preview = preview_df(selected_clinical) print("Clinical data preview:", preview) # Save to file os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) selected_clinical.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # First inspect file structure more thoroughly print("Scanning file for matrix data marker:") marker_line_num = None data_header = None with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: for i, line in enumerate(f): if i < 5: # Show first few lines print(f"Line {i}: {line.strip()}") if "!series_matrix_table_begin" in line.lower(): marker_line_num = i print(f"\nFound matrix marker at line {i}") # Get the next line which should be the header data_header = next(f).strip() print(f"Header line: {data_header}") # Get a few data lines print("\nFirst few data lines:") for _ in range(3): print(next(f).strip()) break if marker_line_num is None: print("\nWarning: Matrix data marker not found!") # Try reading the gene expression data if marker_line_num is not None: try: gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data print("\nShape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) except Exception as e: print(f"\nError reading gene data: {str(e)}") else: print("Cannot read gene data - matrix marker not found") # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # First check the data structure with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: # Skip to matrix line for line in f: if "!series_matrix_table_begin" in line: # Read header and first few lines to inspect format header = next(f).strip() print("\nPeeking at matrix data structure:") for _ in range(3): # Show first 3 data lines print(next(f).strip()) break # Modify read_csv parameters to handle the data format def get_genetic_data_modified(file_path: str, marker: str = "!series_matrix_table_begin") -> pd.DataFrame: # Determine rows to skip with gzip.open(file_path, 'rt') as file: for i, line in enumerate(file): if marker in line: skip_rows = i + 1 break else: raise ValueError(f"Marker '{marker}' not found") # Read with modified parameters for quoted data genetic_data = pd.read_csv(file_path, compression='gzip', skiprows=skip_rows, comment='!', delimiter='\t', quotechar='"', on_bad_lines='skip') # Process column names to remove quotes genetic_data.columns = genetic_data.columns.str.strip('"') # Rename and set index genetic_data = genetic_data.rename(columns={'ID_REF': 'ID'}).astype({'ID': 'str'}) genetic_data.set_index('ID', inplace=True) return genetic_data # Extract gene expression data using modified function gene_data = get_genetic_data_modified(matrix_file) # Print diagnostic information print("\nShape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20])