# Path Configuration from tools.preprocess import * # Processing context trait = "Rectal_Cancer" cohort = "GSE119409" # Input paths in_trait_dir = "../DATA/GEO/Rectal_Cancer" in_cohort_dir = "../DATA/GEO/Rectal_Cancer/GSE119409" # Output paths out_data_file = "./output/preprocess/3/Rectal_Cancer/GSE119409.csv" out_gene_data_file = "./output/preprocess/3/Rectal_Cancer/gene_data/GSE119409.csv" out_clinical_data_file = "./output/preprocess/3/Rectal_Cancer/clinical_data/GSE119409.csv" json_path = "./output/preprocess/3/Rectal_Cancer/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # From series title and summary, this dataset contains gene expression data is_gene_available = True # 2.1 Data Availability # Trait (sensitivity to therapy) is in row 2 trait_row = 2 # Age is in row 3 age_row = 3 # Gender is not available gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): if not isinstance(x, str): return None x = x.split(': ')[1].lower() if x == 'sensitive': return 1 elif x == 'resistant': return 0 return None def convert_age(x): if not isinstance(x, str): return None try: age = int(x.split(': ')[1]) return age except: return None def convert_gender(x): return None # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None)) # 4. Clinical Feature Extraction # Extract features since trait data is available clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_df)) # Save to CSV clinical_df.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # The gene identifiers in the data appear to be Affymetrix probe IDs (e.g. "1007_s_at", "1053_at") # These are not standard gene symbols and need to be mapped to HGNC gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # From the preview, we can see 'ID' contains probe IDs matching gene expression data # and 'Gene Symbol' contains corresponding gene symbols # Get gene mapping between probe IDs and gene symbols gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Convert probe data to gene expression data gene_data = apply_gene_mapping(genetic_data, gene_mapping) # Normalize the gene symbols in the data gene_data = normalize_gene_symbols_in_index(gene_data) # Print shape of final gene data print("Gene expression data shape:", gene_data.shape) print("\nPreview of gene data:") print(preview_df(gene_data)) # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Dataset contains gene expression data from rectal cancer patients examining chemoradiotherapy response." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)