# Path Configuration from tools.preprocess import * # Processing context trait = "Rectal_Cancer" cohort = "GSE123390" # Input paths in_trait_dir = "../DATA/GEO/Rectal_Cancer" in_cohort_dir = "../DATA/GEO/Rectal_Cancer/GSE123390" # Output paths out_data_file = "./output/preprocess/3/Rectal_Cancer/GSE123390.csv" out_gene_data_file = "./output/preprocess/3/Rectal_Cancer/gene_data/GSE123390.csv" out_clinical_data_file = "./output/preprocess/3/Rectal_Cancer/clinical_data/GSE123390.csv" json_path = "./output/preprocess/3/Rectal_Cancer/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Availability # Yes - Using Affymetrix Human Transcriptome Array 2.0 for global gene expression is_gene_available = True # 2. Variable Availability and Conversion # Trait (Response to treatment) # Available in row 2 as "response" - binary outcome (pCR vs pIR) trait_row = 2 def convert_trait(value): if not isinstance(value, str): return None value = value.split(": ")[-1].strip() if value == "pCR": # Complete response return 1 elif value == "pIR": # Incomplete response return 0 return None # Age - Not available age_row = None convert_age = None # Gender - Not available gender_row = None convert_gender = None # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract clinical features if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of selected clinical features:") print(preview_df(selected_clinical)) # Save to CSV selected_clinical.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Based on observation of the row IDs like "2824546_st", these are Affymetrix probe IDs # rather than standard human gene symbols. They will need to be mapped to gene symbols. requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # The 'ID' column in gene annotation appears to contain probe IDs that match the gene expression data index # The 'gene_assignment' column contains gene symbols, but needs extraction # Get gene mapping dataframe mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # Apply gene mapping to convert probe-level measurements to gene expression gene_data = apply_gene_mapping(genetic_data, mapping_data) # Print shape and preview gene expression data print("\nShape of gene expression data after mapping:", gene_data.shape) print("\nPreview of gene data:") print(preview_df(gene_data)) # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Dataset contains gene expression data from rectal cancer patients examining chemoradiotherapy response." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)