# Path Configuration from tools.preprocess import * # Processing context trait = "Retinoblastoma" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Retinoblastoma/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Retinoblastoma/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Retinoblastoma/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Retinoblastoma/cohort_info.json" # 1. Look for directories related to retinoblastoma (eye/ocular cancer) available_cohorts = os.listdir(tcga_root_dir) relevant_dirs = [d for d in available_cohorts if any(term in d.lower() for term in ['eye', 'ocular', 'retina', 'retinoblastoma'])] # If no exact match found, use ocular melanoma as closest available eye cancer data if len(relevant_dirs) == 0: # Record unavailability and exit validate_and_save_cohort_info( is_final=False, cohort="TCGA", info_path=json_path, is_gene_available=False, is_trait_available=False ) # Since we need to skip this trait, return empty dataframes to avoid errors in subsequent code clinical_df = pd.DataFrame() genetic_df = pd.DataFrame() else: # Select the most relevant directory (first match) selected_dir = relevant_dirs[0] cohort_dir = os.path.join(tcga_root_dir, selected_dir) # 2. Get file paths for clinical and genetic data clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load the data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Record data availability is_gene_available = len(genetic_df.columns) > 0 is_trait_available = len(clinical_df.columns) > 0 validate_and_save_cohort_info( is_final=False, cohort="TCGA", info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Identify candidate demographic columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Get list of TCGA cohort directories cohorts = os.listdir(tcga_root_dir) # Find any clinical files containing Retinoblastoma data clinical_df = None for cohort in cohorts: cohort_dir = os.path.join(tcga_root_dir, cohort) if os.path.isdir(cohort_dir): try: clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir) temp_df = pd.read_csv(clinical_file_path, index_col=0) if any('retinoblastoma' in str(col).lower() for col in temp_df.columns): clinical_df = temp_df break except: continue if clinical_df is not None: # Preview age columns age_preview = {} for col in candidate_age_cols: if col in clinical_df.columns: age_preview[col] = clinical_df[col].head().tolist() print("Age columns preview:", age_preview) # Preview gender columns gender_preview = {} for col in candidate_gender_cols: if col in clinical_df.columns: gender_preview[col] = clinical_df[col].head().tolist() print("Gender columns preview:", gender_preview) else: print("No clinical data found containing Retinoblastoma information")