# Path Configuration from tools.preprocess import * # Processing context trait = "Rheumatoid_Arthritis" cohort = "GSE121894" # Input paths in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis" in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE121894" # Output paths out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE121894.csv" out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE121894.csv" out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE121894.csv" json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # From series title and design, this is gene expression microarray data # 2. Variable Availability and Data Type Conversion trait_row = 0 # Subject status row contains RA/control info age_row = None # Age not available gender_row = None # Gender not available # Convert trait: binary (0=control, 1=RA) def convert_trait(value): if not isinstance(value, str): return None value = value.lower().split(':')[-1].strip() if 'rheumatoid arthritis' in value: return 1 elif 'healthy control' in value: return 0 return None # Skip convert_age and convert_gender since data not available # 3. Save metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical feature extraction clinical_df = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait) # Preview and save clinical data print("Clinical data preview:") print(preview_df(clinical_df)) clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Looking at the gene identifiers, they are ending with '_at' which indicates # they are Affymetrix probe IDs, not standard human gene symbols. # These need to be mapped to gene symbols for consistent downstream analysis. requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # 1. Extract gene annotation data with enhanced preview to find gene symbol column gene_metadata = get_gene_annotation(soft_file) print("\nFirst lines of raw SOFT file to locate gene symbol column:") with gzip.open(soft_file, 'rt', encoding='utf-8') as f: for i, line in enumerate(f): if not any(line.startswith(p) for p in ['^', '!', '#']): print(line.strip()) print("-"*80) if i > 5: break # Print all columns in gene_metadata print("\nAll columns in gene metadata:") print(gene_metadata.columns.tolist()) print("\nFull preview of first row:") print(gene_metadata.iloc[0].to_dict()) # Get gene symbol info from SOFT file using regex pattern gene_metadata['Gene_Symbol'] = gene_metadata['Description'].apply(lambda x: extract_human_gene_symbols(x)[0] if extract_human_gene_symbols(x) else None) # 2. Get gene mapping dataframe with probe ID and gene symbol columns mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene_Symbol') # 3. Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_data) # Print the shape and preview of the mapped gene data print("\nShape of gene data after mapping:", gene_data.shape) print("\nPreview of gene data after mapping:") print(preview_df(gene_data)) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study examining transcriptome profiles in rheumatoid arthritis." ) # 6. Save if usable if is_usable: linked_data.to_csv(out_data_file)