# Path Configuration from tools.preprocess import * # Processing context trait = "Rheumatoid_Arthritis" cohort = "GSE140161" # Input paths in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis" in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE140161" # Output paths out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE140161.csv" out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE140161.csv" out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE140161.csv" json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Availability # Yes - Series_overall_design indicates Affymetrix chip was used for whole blood transcriptome is_gene_available = True # 2.1 Data Availability # Disease state is constant "Sjögren's syndrome", not usable trait_row = None # Gender is available in row 1 gender_row = 1 # Age is not available age_row = None # 2.2 Data Type Conversion def convert_trait(x): # Not used since trait_row is None return None def convert_gender(x): if not isinstance(x, str): return None value = x.split(': ')[1].lower() if ': ' in x else x.lower() if value == 'female': return 0 elif value == 'male': return 1 return None def convert_age(x): # Not used since age_row is None return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction skipped since trait_row is None # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # Extract gene IDs and gene symbols from annotation data def get_gene_name(text): """Extract gene symbol from RefSeq annotation text""" if not isinstance(text, str): return None # Look for gene symbols after RefSeq match = re.search(r'RefSeq // Homo sapiens .+?\(([A-Z0-9]+)\)', text) if match: return match.group(1) # Also try looking for gene symbols after HGNC Symbol tag match = re.search(r'\[Source:HGNC Symbol;Acc:HGNC:\d+\] // ([A-Z0-9]+)', text) if match: return match.group(1) return None # Create mapping dataframe mapping_data = pd.DataFrame({ 'ID': gene_metadata['ID'], 'Gene': gene_metadata['SPOT_ID.1'].apply(get_gene_name) }) # Map probes to genes and combine expression values gene_data = apply_gene_mapping(gene_data, mapping_data) # Preview result print("Shape of mapped gene expression data:", gene_data.shape) print("\nFirst few rows of mapped data:") print(gene_data.head()) # Save normalized gene data for future use gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Create minimal clinical features with constant trait clinical_features = pd.DataFrame({'Sjogrens': 1}, index=gene_data.columns) # Link data and check bias linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) linked_data = handle_missing_values(linked_data, 'Sjogrens') trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Sjogrens') # Validate and save info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains gene expression data but all samples are Sjögren's syndrome cases." ) # Save if usable (won't be in this case due to constant trait) if is_usable: linked_data.to_csv(out_data_file)