# Path Configuration from tools.preprocess import * # Processing context trait = "Rheumatoid_Arthritis" cohort = "GSE176440" # Input paths in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis" in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE176440" # Output paths out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE176440.csv" out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE176440.csv" out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE176440.csv" json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # Check gene data availability - Yes, this is a microarray gene expression dataset is_gene_available = True # Check trait data availability - Feature 2 indicates treatment status, can be used for disease activity trait_row = 2 # Age data is not available age_row = None # Gender data is not available gender_row = None # Convert treatment status to binary (before=1 active disease, after=0 controlled) def convert_trait(value): if not isinstance(value, str): return None value = value.split(": ")[-1].lower() if "before" in value: return 1 elif "after" in value: return 0 return None # Age conversion not needed convert_age = None # Gender conversion not needed convert_gender = None # Validate and save cohort info validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # Extract clinical features since trait data is available clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data print("Preview of clinical features:") print(preview_df(clinical_features)) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Based on the probe IDs (e.g., A_23_P100001), these are Agilent microarray probe IDs, not gene symbols # Therefore we need to map them to standard gene symbols requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # Get gene mapping from annotation data # ID column contains the same probe IDs as in gene expression data # GENE_SYMBOL column contains the target gene symbols mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL') # Apply gene mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_data) # Preview the gene-level expression data print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of gene-level data:") print(gene_data.head()) print("\nFirst 20 gene symbols:") print(gene_data.index[:20]) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study examining transcriptome profiles in rheumatoid arthritis." ) # 6. Save if usable if is_usable: linked_data.to_csv(out_data_file)