# Path Configuration from tools.preprocess import * # Processing context trait = "Rheumatoid_Arthritis" cohort = "GSE42842" # Input paths in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis" in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE42842" # Output paths out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE42842.csv" out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE42842.csv" out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE42842.csv" json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Since Series_overall_design mentions two color experiments, this is a gene expression microarray dataset is_gene_available = True # 2.1 Data Availability # Feature 2 shows disease state, which indicates RA vs non-RA trait_row = 2 # Age is not available in sample characteristics age_row = None # Gender is available in Feature 0 gender_row = 0 # 2.2 Data Type Conversion Functions def convert_trait(x): """Convert disease state to binary""" if not isinstance(x, str): return None value = x.split(': ')[1].lower() if ': ' in x else x.lower() if 'rheumatoid arthritis' in value: return 1 return None def convert_gender(x): """Convert gender to binary (0=female, 1=male)""" if not isinstance(x, str): return None value = x.split(': ')[1].lower() if ': ' in x else x.lower() if value == 'f': return 0 elif value == 'm': return 1 return None convert_age = None # 3. Save initial metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract clinical features if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data print("Preview of selected clinical features:") print(preview_df(selected_clinical)) # Save to CSV selected_clinical.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The gene identifiers are just numerical indices (1,2,3...) # They are not human gene symbols and need to be mapped requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file) # Preview annotation data print("Gene annotation preview:") print(preview_df(gene_annotation)) # Check if gene annotation data is usable by looking at gene-related columns gene_cols = ['GENE', 'GENE_SYMBOL', 'GENE_NAME', 'REFSEQ', 'GB_ACC', 'UNIGENE_ID', 'ENSEMBL_ID'] has_gene_info = any(gene_annotation[col].notna().any() for col in gene_cols) if not has_gene_info: # Save metadata indicating this dataset is not usable validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=False, # Set to False since gene annotations are missing is_trait_available=True, note="Dataset lacks proper gene annotations - all gene identifier fields are empty" ) print("\nWARNING: This dataset lacks proper gene annotations.") print("All gene identifier fields (GENE, GENE_SYMBOL, REFSEQ, etc.) are empty.") print("Stopping processing as gene mapping cannot be performed without annotations.") # Exit further processing as dataset is not suitable raise ValueError("Dataset lacks proper gene annotations")