# Path Configuration from tools.preprocess import * # Processing context trait = "Rheumatoid_Arthritis" cohort = "GSE97475" # Input paths in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis" in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE97475" # Output paths out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE97475.csv" out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE97475.csv" out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE97475.csv" json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on the series title and description, this is a gene expression study that includes PBMCs RNA data is_gene_available = True # 2.1 Data Availability # Trait: Not available since this is healthy control data trait_row = None # Age: Available in demographics age_row = 81 # Gender: Available in demographics gender_row = 118 # 2.2 Data Type Conversion Functions def convert_trait(x): return None def convert_age(x): if pd.isna(x): return None value = x.split(': ')[1] try: return float(value) except: return None def convert_gender(x): if pd.isna(x): return None value = x.split(': ')[1].lower() if 'female' in value: return 0 elif 'male' in value: return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) requires_gene_mapping = False # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Since trait_row is None (no trait data available), skip clinical data processing # and data linking. Instead, just validate and save the cohort info. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, # We know trait is not available is_biased=None, # No trait to check for bias df=None, note="Dataset contains gene expression profiles from healthy hepatitis B vaccine recipients, but lacks disease trait for comparison." )